Matches in SemOpenAlex for { <https://semopenalex.org/work/W3214135077> ?p ?o ?g. }
- W3214135077 endingPage "109818" @default.
- W3214135077 startingPage "109818" @default.
- W3214135077 abstract "Many studies of animal distributions use habitat and climactic variables to explain patterns of observed space use. However, without behavioral information, we can only speculate as to why and how these characteristics are important to species persistence. Animal-borne accelerometer and magnetometer data loggers can be used to detect behaviors and when coupled with telemetry improve our understanding of animal space use and habitat requirements. However, these loggers collect tremendous quantities of data requiring automated machine learning techniques to identify patterns in the data. Supervised machine learning requires a set of training signals with known behaviors to train the model to identify the unique signal characteristics associated with each behavior. In contrast, unsupervised approaches aggregate unlabeled signals into groups based purely on signal similarity but, without additional information, do not identify specific behaviors. In this paper, we propose a probabilistic framework for interpreting uncertainty in machine learning techniques—the probability profile—and demonstrate how to post hoc identify behaviors within signal groups. We assess model performance using a matrix-based measure of dissimilarity. We used a Random Forest (RF) and a clustered self-organizing map (CSOM) for comparison and demonstrate the use of a behavioral profile for each using a data set of high-frequency accelerometer and magnetometer data collected from 7 captive wild pigs (Sus scrofa) moving in a 1 ha outdoor enclosure. We found that the RF had more discrimination than the CSOM which had fewer clusters associated with high probabilities of a single behavior (>50%). The leave-p-out cross validation statistic of the probability matrix (L1¯) indicated that there was an average maximum dissimilarity of 20% and 65% between the training and test data sets for the RF and CSOM methods, respectively. Using a probability profile to describe groups predicted from machine learning allows the variation and error inherent in behavioral prediction to be incorporated directly into the model to better reflect the nuances of behavior derived from accelerometer and/or magnetometer signals. We discuss the data requirements of this framework, demonstrate its application to field data, highlight critical assumptions and caveats, and examine how it may be used to generate new ecological inference." @default.
- W3214135077 created "2021-11-22" @default.
- W3214135077 creator A5004277999 @default.
- W3214135077 creator A5026797834 @default.
- W3214135077 creator A5041474486 @default.
- W3214135077 creator A5042484295 @default.
- W3214135077 creator A5045665954 @default.
- W3214135077 creator A5052964145 @default.
- W3214135077 creator A5067307650 @default.
- W3214135077 creator A5073180940 @default.
- W3214135077 creator A5073221509 @default.
- W3214135077 creator A5077306226 @default.
- W3214135077 date "2022-02-01" @default.
- W3214135077 modified "2023-10-12" @default.
- W3214135077 title "A probabilistic framework for behavioral identification from animal-borne accelerometers" @default.
- W3214135077 cites W1786819714 @default.
- W3214135077 cites W1936068024 @default.
- W3214135077 cites W1978939541 @default.
- W3214135077 cites W1983107011 @default.
- W3214135077 cites W1984531138 @default.
- W3214135077 cites W1987971958 @default.
- W3214135077 cites W1995506658 @default.
- W3214135077 cites W2028854964 @default.
- W3214135077 cites W2039951642 @default.
- W3214135077 cites W2043475059 @default.
- W3214135077 cites W2047188683 @default.
- W3214135077 cites W2054255259 @default.
- W3214135077 cites W2054820883 @default.
- W3214135077 cites W2056470557 @default.
- W3214135077 cites W2066244511 @default.
- W3214135077 cites W2066418236 @default.
- W3214135077 cites W2070073558 @default.
- W3214135077 cites W2070383642 @default.
- W3214135077 cites W2075316439 @default.
- W3214135077 cites W2079810998 @default.
- W3214135077 cites W2097601813 @default.
- W3214135077 cites W2101348276 @default.
- W3214135077 cites W2107687774 @default.
- W3214135077 cites W2108916750 @default.
- W3214135077 cites W2110802877 @default.
- W3214135077 cites W2114795157 @default.
- W3214135077 cites W2117445811 @default.
- W3214135077 cites W2120553757 @default.
- W3214135077 cites W2123337039 @default.
- W3214135077 cites W2136375252 @default.
- W3214135077 cites W2138973222 @default.
- W3214135077 cites W2139086914 @default.
- W3214135077 cites W2150181040 @default.
- W3214135077 cites W2157657991 @default.
- W3214135077 cites W2158153693 @default.
- W3214135077 cites W2162989219 @default.
- W3214135077 cites W2255128034 @default.
- W3214135077 cites W2278434462 @default.
- W3214135077 cites W2319475368 @default.
- W3214135077 cites W2330506647 @default.
- W3214135077 cites W2443155329 @default.
- W3214135077 cites W2464270607 @default.
- W3214135077 cites W2599260882 @default.
- W3214135077 cites W2796573361 @default.
- W3214135077 cites W2884565788 @default.
- W3214135077 cites W2884967004 @default.
- W3214135077 cites W2889489537 @default.
- W3214135077 cites W2935643394 @default.
- W3214135077 cites W2951394506 @default.
- W3214135077 cites W2969700004 @default.
- W3214135077 cites W3022022880 @default.
- W3214135077 cites W3158357280 @default.
- W3214135077 doi "https://doi.org/10.1016/j.ecolmodel.2021.109818" @default.
- W3214135077 hasPublicationYear "2022" @default.
- W3214135077 type Work @default.
- W3214135077 sameAs 3214135077 @default.
- W3214135077 citedByCount "4" @default.
- W3214135077 countsByYear W32141350772022 @default.
- W3214135077 countsByYear W32141350772023 @default.
- W3214135077 crossrefType "journal-article" @default.
- W3214135077 hasAuthorship W3214135077A5004277999 @default.
- W3214135077 hasAuthorship W3214135077A5026797834 @default.
- W3214135077 hasAuthorship W3214135077A5041474486 @default.
- W3214135077 hasAuthorship W3214135077A5042484295 @default.
- W3214135077 hasAuthorship W3214135077A5045665954 @default.
- W3214135077 hasAuthorship W3214135077A5052964145 @default.
- W3214135077 hasAuthorship W3214135077A5067307650 @default.
- W3214135077 hasAuthorship W3214135077A5073180940 @default.
- W3214135077 hasAuthorship W3214135077A5073221509 @default.
- W3214135077 hasAuthorship W3214135077A5077306226 @default.
- W3214135077 hasConcept C103278499 @default.
- W3214135077 hasConcept C105795698 @default.
- W3214135077 hasConcept C111919701 @default.
- W3214135077 hasConcept C115961682 @default.
- W3214135077 hasConcept C116834253 @default.
- W3214135077 hasConcept C119857082 @default.
- W3214135077 hasConcept C124101348 @default.
- W3214135077 hasConcept C153180895 @default.
- W3214135077 hasConcept C154945302 @default.
- W3214135077 hasConcept C169258074 @default.
- W3214135077 hasConcept C177264268 @default.
- W3214135077 hasConcept C18903297 @default.
- W3214135077 hasConcept C199360897 @default.