Matches in SemOpenAlex for { <https://semopenalex.org/work/W3214174920> ?p ?o ?g. }
- W3214174920 endingPage "108340" @default.
- W3214174920 startingPage "108340" @default.
- W3214174920 abstract "Image denoising, degraded by speckle noise, has turned into a prevalent problem in image processing. Speckle noise provides a granular perspective into the image and makes it difficult to have a clear interpretation of the singular and non-singular points. This paper proposes a novel statistical approach based on Gaussian Copula modeling in the Shearlet domain. The proposed multi-dimensional Minimum Mean Square Error (MMSE) processor consists of two key components. First, Bi Parameter Cauchy Gaussian Mixture model (BCGM) as the marginal distribution of shearlet coefficients is employed. Second, the joint-prior distribution modeling is formed, based on proposing the Gaussian copula, to model the dependency of the target coefficient respect to its neighbors. The closed form mathematical expression of proposed multi dimensional MMSE processor has some computational advantages, such as parallel computing. It will be shown that the proposed processor has adaptive behavior, meaning that, working non-linearly according to the estimated noise variance on each scale and direction of the shratlet transform. This behavior confirms that the designed processor is not sensitive to initial parameter settings, unlike the state-of-the-art filters in this area." @default.
- W3214174920 created "2021-11-22" @default.
- W3214174920 creator A5006999765 @default.
- W3214174920 creator A5071926808 @default.
- W3214174920 date "2022-03-01" @default.
- W3214174920 modified "2023-09-30" @default.
- W3214174920 title "A Novel Gaussian-Copula modeling for image despeckling in the shearlet domain" @default.
- W3214174920 cites W1814707006 @default.
- W3214174920 cites W1973207880 @default.
- W3214174920 cites W1990559054 @default.
- W3214174920 cites W2004376198 @default.
- W3214174920 cites W2029304017 @default.
- W3214174920 cites W2030362233 @default.
- W3214174920 cites W2033276808 @default.
- W3214174920 cites W2065446556 @default.
- W3214174920 cites W2073935280 @default.
- W3214174920 cites W2090563002 @default.
- W3214174920 cites W2096433476 @default.
- W3214174920 cites W2097061348 @default.
- W3214174920 cites W2106783469 @default.
- W3214174920 cites W2117881455 @default.
- W3214174920 cites W2119478879 @default.
- W3214174920 cites W2122072454 @default.
- W3214174920 cites W2127151921 @default.
- W3214174920 cites W2129553449 @default.
- W3214174920 cites W2130094715 @default.
- W3214174920 cites W2132984323 @default.
- W3214174920 cites W2147985697 @default.
- W3214174920 cites W2151221869 @default.
- W3214174920 cites W2158347164 @default.
- W3214174920 cites W2158940042 @default.
- W3214174920 cites W2166013116 @default.
- W3214174920 cites W2168226778 @default.
- W3214174920 cites W2341218011 @default.
- W3214174920 cites W2345972545 @default.
- W3214174920 cites W2588852908 @default.
- W3214174920 cites W2606400548 @default.
- W3214174920 cites W2755053902 @default.
- W3214174920 cites W2899928528 @default.
- W3214174920 cites W2905160918 @default.
- W3214174920 cites W2936194671 @default.
- W3214174920 cites W2946041101 @default.
- W3214174920 cites W2946283628 @default.
- W3214174920 cites W2949700027 @default.
- W3214174920 cites W2961287872 @default.
- W3214174920 cites W2966023036 @default.
- W3214174920 cites W2988548513 @default.
- W3214174920 cites W2989628331 @default.
- W3214174920 cites W2991617172 @default.
- W3214174920 cites W3038806032 @default.
- W3214174920 cites W3077327398 @default.
- W3214174920 cites W3092221680 @default.
- W3214174920 doi "https://doi.org/10.1016/j.sigpro.2021.108340" @default.
- W3214174920 hasPublicationYear "2022" @default.
- W3214174920 type Work @default.
- W3214174920 sameAs 3214174920 @default.
- W3214174920 citedByCount "5" @default.
- W3214174920 countsByYear W32141749202022 @default.
- W3214174920 countsByYear W32141749202023 @default.
- W3214174920 crossrefType "journal-article" @default.
- W3214174920 hasAuthorship W3214174920A5006999765 @default.
- W3214174920 hasAuthorship W3214174920A5071926808 @default.
- W3214174920 hasConcept C102290492 @default.
- W3214174920 hasConcept C105795698 @default.
- W3214174920 hasConcept C11413529 @default.
- W3214174920 hasConcept C115961682 @default.
- W3214174920 hasConcept C121332964 @default.
- W3214174920 hasConcept C149782125 @default.
- W3214174920 hasConcept C153180895 @default.
- W3214174920 hasConcept C154945302 @default.
- W3214174920 hasConcept C163716315 @default.
- W3214174920 hasConcept C17618745 @default.
- W3214174920 hasConcept C185429906 @default.
- W3214174920 hasConcept C28826006 @default.
- W3214174920 hasConcept C33923547 @default.
- W3214174920 hasConcept C41008148 @default.
- W3214174920 hasConcept C4199805 @default.
- W3214174920 hasConcept C49344536 @default.
- W3214174920 hasConcept C62520636 @default.
- W3214174920 hasConcept C67795661 @default.
- W3214174920 hasConcept C90652560 @default.
- W3214174920 hasConceptScore W3214174920C102290492 @default.
- W3214174920 hasConceptScore W3214174920C105795698 @default.
- W3214174920 hasConceptScore W3214174920C11413529 @default.
- W3214174920 hasConceptScore W3214174920C115961682 @default.
- W3214174920 hasConceptScore W3214174920C121332964 @default.
- W3214174920 hasConceptScore W3214174920C149782125 @default.
- W3214174920 hasConceptScore W3214174920C153180895 @default.
- W3214174920 hasConceptScore W3214174920C154945302 @default.
- W3214174920 hasConceptScore W3214174920C163716315 @default.
- W3214174920 hasConceptScore W3214174920C17618745 @default.
- W3214174920 hasConceptScore W3214174920C185429906 @default.
- W3214174920 hasConceptScore W3214174920C28826006 @default.
- W3214174920 hasConceptScore W3214174920C33923547 @default.
- W3214174920 hasConceptScore W3214174920C41008148 @default.
- W3214174920 hasConceptScore W3214174920C4199805 @default.
- W3214174920 hasConceptScore W3214174920C49344536 @default.
- W3214174920 hasConceptScore W3214174920C62520636 @default.