Matches in SemOpenAlex for { <https://semopenalex.org/work/W3214220167> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W3214220167 abstract "Given the Covid-19 pandemic, the retail industry shifts many business models to enable more online purchases that produce large transaction data quantities (i.e., big data). Data science methods infer seasonal trends about products from this data and spikes in purchases, the effectiveness of advertising campaigns, or brand loyalty but require extensive processing power leveraging High-Performance Computing to deal with large transaction datasets. This paper proposes an High-Performance Computing-based expert system architectural design tailored for ‘big data analysis’ in the retail industry, providing data science methods and tools to speed up the data analysis with conceptual interoperability to commercial cloud-based services. Our expert system leverages an innovative Modular Supercomputer Architecture to enable the fast analysis by using parallel and distributed algorithms such as association rule mining (i.e., FP-Growth) and recommender methods (i.e., collaborative filtering). It enables the seamless use of accelerators of supercomputers or cloud-based systems to perform automated product tagging (i.e., residual deep learning networks for product image analysis) to obtain colour, shapes automatically, and other product features. We validate our expert system and its enhanced knowledge representation with commercial datasets obtained from our ON4OFF research project in a retail case study in the beauty sector." @default.
- W3214220167 created "2021-11-22" @default.
- W3214220167 creator A5008220787 @default.
- W3214220167 creator A5020376157 @default.
- W3214220167 creator A5026360751 @default.
- W3214220167 creator A5057623163 @default.
- W3214220167 creator A5058680339 @default.
- W3214220167 creator A5082191714 @default.
- W3214220167 date "2021-09-27" @default.
- W3214220167 modified "2023-09-24" @default.
- W3214220167 title "Design and Evaluation of an HPC-based Expert System to speed-up Retail Data Analysis using Residual Networks Combined with Parallel Association Rule Mining and Scalable Recommenders" @default.
- W3214220167 cites W2076063813 @default.
- W3214220167 cites W2100809207 @default.
- W3214220167 cites W2126417283 @default.
- W3214220167 cites W2163739308 @default.
- W3214220167 cites W2165698076 @default.
- W3214220167 cites W2194775991 @default.
- W3214220167 cites W2203189730 @default.
- W3214220167 cites W2668848100 @default.
- W3214220167 cites W2784570262 @default.
- W3214220167 cites W2889059162 @default.
- W3214220167 cites W2902347159 @default.
- W3214220167 cites W2955964483 @default.
- W3214220167 cites W2962899685 @default.
- W3214220167 cites W2983005688 @default.
- W3214220167 cites W3131859476 @default.
- W3214220167 cites W805665992 @default.
- W3214220167 doi "https://doi.org/10.23919/mipro52101.2021.9596796" @default.
- W3214220167 hasPublicationYear "2021" @default.
- W3214220167 type Work @default.
- W3214220167 sameAs 3214220167 @default.
- W3214220167 citedByCount "0" @default.
- W3214220167 crossrefType "proceedings-article" @default.
- W3214220167 hasAuthorship W3214220167A5008220787 @default.
- W3214220167 hasAuthorship W3214220167A5020376157 @default.
- W3214220167 hasAuthorship W3214220167A5026360751 @default.
- W3214220167 hasAuthorship W3214220167A5057623163 @default.
- W3214220167 hasAuthorship W3214220167A5058680339 @default.
- W3214220167 hasAuthorship W3214220167A5082191714 @default.
- W3214220167 hasConcept C111919701 @default.
- W3214220167 hasConcept C124101348 @default.
- W3214220167 hasConcept C127722929 @default.
- W3214220167 hasConcept C136764020 @default.
- W3214220167 hasConcept C193524817 @default.
- W3214220167 hasConcept C20136886 @default.
- W3214220167 hasConcept C23123220 @default.
- W3214220167 hasConcept C2522767166 @default.
- W3214220167 hasConcept C41008148 @default.
- W3214220167 hasConcept C48044578 @default.
- W3214220167 hasConcept C557471498 @default.
- W3214220167 hasConcept C67186912 @default.
- W3214220167 hasConcept C75684735 @default.
- W3214220167 hasConcept C75949130 @default.
- W3214220167 hasConcept C77088390 @default.
- W3214220167 hasConcept C79158427 @default.
- W3214220167 hasConcept C79974875 @default.
- W3214220167 hasConcept C83283714 @default.
- W3214220167 hasConceptScore W3214220167C111919701 @default.
- W3214220167 hasConceptScore W3214220167C124101348 @default.
- W3214220167 hasConceptScore W3214220167C127722929 @default.
- W3214220167 hasConceptScore W3214220167C136764020 @default.
- W3214220167 hasConceptScore W3214220167C193524817 @default.
- W3214220167 hasConceptScore W3214220167C20136886 @default.
- W3214220167 hasConceptScore W3214220167C23123220 @default.
- W3214220167 hasConceptScore W3214220167C2522767166 @default.
- W3214220167 hasConceptScore W3214220167C41008148 @default.
- W3214220167 hasConceptScore W3214220167C48044578 @default.
- W3214220167 hasConceptScore W3214220167C557471498 @default.
- W3214220167 hasConceptScore W3214220167C67186912 @default.
- W3214220167 hasConceptScore W3214220167C75684735 @default.
- W3214220167 hasConceptScore W3214220167C75949130 @default.
- W3214220167 hasConceptScore W3214220167C77088390 @default.
- W3214220167 hasConceptScore W3214220167C79158427 @default.
- W3214220167 hasConceptScore W3214220167C79974875 @default.
- W3214220167 hasConceptScore W3214220167C83283714 @default.
- W3214220167 hasFunder F4320335254 @default.
- W3214220167 hasFunder F4320335322 @default.
- W3214220167 hasLocation W32142201671 @default.
- W3214220167 hasOpenAccess W3214220167 @default.
- W3214220167 hasPrimaryLocation W32142201671 @default.
- W3214220167 hasRelatedWork W1563794669 @default.
- W3214220167 hasRelatedWork W1857808041 @default.
- W3214220167 hasRelatedWork W2374117562 @default.
- W3214220167 hasRelatedWork W3036124657 @default.
- W3214220167 hasRelatedWork W3097243301 @default.
- W3214220167 hasRelatedWork W3171568351 @default.
- W3214220167 hasRelatedWork W3180337491 @default.
- W3214220167 hasRelatedWork W4200184607 @default.
- W3214220167 hasRelatedWork W4214869855 @default.
- W3214220167 hasRelatedWork W4287605407 @default.
- W3214220167 isParatext "false" @default.
- W3214220167 isRetracted "false" @default.
- W3214220167 magId "3214220167" @default.
- W3214220167 workType "article" @default.