Matches in SemOpenAlex for { <https://semopenalex.org/work/W3214294465> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W3214294465 abstract "The task of converting a nonstandard text to a standard and readable text is known as lexical normalization. Almost all the Natural Language Processing (NLP) applications require the text data in normalized form to build quality task-specific models. Hence, lexical normalization has been proven to improve the performance of numerous natural language processing tasks on social media. This study aims to solve the problem of Lexical Normalization by formulating the Lexical Normalization task as a Sequence Labeling problem. This paper proposes a sequence labeling approach to solve the problem of Lexical Normalization in combination with the word-alignment technique. The goal is to use a single model to normalize text in various languages namely Croatian, Danish, Dutch, English, Indonesian-English, German, Italian, Serbian, Slovenian, Spanish, Turkish, and Turkish-German. This is a shared task in “2021 The 7th Workshop on Noisy User-generated Text (W-NUT)” in which the participants are expected to create a system/model that performs lexical normalization, which is the translation of non-canonical texts into their canonical equivalents, comprising data from over 12 languages. The proposed single multilingual model achieves an overall ERR score of 43.75 on intrinsic evaluation and an overall Labeled Attachment Score (LAS) score of 63.12 on extrinsic evaluation. Further, the proposed method achieves the highest Error Reduction Rate (ERR) score of 61.33 among the participants in the shared task. This study highlights the effects of using additional training data to get better results as well as using a pre-trained Language model trained on multiple languages rather than only on one language." @default.
- W3214294465 created "2021-11-22" @default.
- W3214294465 creator A5034574326 @default.
- W3214294465 creator A5075809992 @default.
- W3214294465 date "2021-01-01" @default.
- W3214294465 modified "2023-09-26" @default.
- W3214294465 title "Multilingual Sequence Labeling Approach to solve Lexical Normalization" @default.
- W3214294465 cites W2037789405 @default.
- W3214294465 cites W2119759918 @default.
- W3214294465 cites W2146867136 @default.
- W3214294465 cites W2250307271 @default.
- W3214294465 cites W2250863007 @default.
- W3214294465 cites W2371227879 @default.
- W3214294465 cites W2611178177 @default.
- W3214294465 cites W2952405470 @default.
- W3214294465 cites W2963104174 @default.
- W3214294465 cites W2963341956 @default.
- W3214294465 cites W2965373594 @default.
- W3214294465 cites W2981458766 @default.
- W3214294465 cites W2983040767 @default.
- W3214294465 cites W3007915882 @default.
- W3214294465 doi "https://doi.org/10.18653/v1/2021.wnut-1.51" @default.
- W3214294465 hasPublicationYear "2021" @default.
- W3214294465 type Work @default.
- W3214294465 sameAs 3214294465 @default.
- W3214294465 citedByCount "4" @default.
- W3214294465 countsByYear W32142944652021 @default.
- W3214294465 crossrefType "proceedings-article" @default.
- W3214294465 hasAuthorship W3214294465A5034574326 @default.
- W3214294465 hasAuthorship W3214294465A5075809992 @default.
- W3214294465 hasBestOaLocation W32142944651 @default.
- W3214294465 hasConcept C136886441 @default.
- W3214294465 hasConcept C138885662 @default.
- W3214294465 hasConcept C144024400 @default.
- W3214294465 hasConcept C154775046 @default.
- W3214294465 hasConcept C154945302 @default.
- W3214294465 hasConcept C162324750 @default.
- W3214294465 hasConcept C176982825 @default.
- W3214294465 hasConcept C187736073 @default.
- W3214294465 hasConcept C19165224 @default.
- W3214294465 hasConcept C203005215 @default.
- W3214294465 hasConcept C204321447 @default.
- W3214294465 hasConcept C2780451532 @default.
- W3214294465 hasConcept C28490314 @default.
- W3214294465 hasConcept C35639132 @default.
- W3214294465 hasConcept C41008148 @default.
- W3214294465 hasConcept C41895202 @default.
- W3214294465 hasConceptScore W3214294465C136886441 @default.
- W3214294465 hasConceptScore W3214294465C138885662 @default.
- W3214294465 hasConceptScore W3214294465C144024400 @default.
- W3214294465 hasConceptScore W3214294465C154775046 @default.
- W3214294465 hasConceptScore W3214294465C154945302 @default.
- W3214294465 hasConceptScore W3214294465C162324750 @default.
- W3214294465 hasConceptScore W3214294465C176982825 @default.
- W3214294465 hasConceptScore W3214294465C187736073 @default.
- W3214294465 hasConceptScore W3214294465C19165224 @default.
- W3214294465 hasConceptScore W3214294465C203005215 @default.
- W3214294465 hasConceptScore W3214294465C204321447 @default.
- W3214294465 hasConceptScore W3214294465C2780451532 @default.
- W3214294465 hasConceptScore W3214294465C28490314 @default.
- W3214294465 hasConceptScore W3214294465C35639132 @default.
- W3214294465 hasConceptScore W3214294465C41008148 @default.
- W3214294465 hasConceptScore W3214294465C41895202 @default.
- W3214294465 hasLocation W32142944651 @default.
- W3214294465 hasOpenAccess W3214294465 @default.
- W3214294465 hasPrimaryLocation W32142944651 @default.
- W3214294465 hasRelatedWork W1484029852 @default.
- W3214294465 hasRelatedWork W1512718085 @default.
- W3214294465 hasRelatedWork W1585034923 @default.
- W3214294465 hasRelatedWork W1592339875 @default.
- W3214294465 hasRelatedWork W2135598948 @default.
- W3214294465 hasRelatedWork W2435130738 @default.
- W3214294465 hasRelatedWork W3107474891 @default.
- W3214294465 hasRelatedWork W3214294465 @default.
- W3214294465 hasRelatedWork W2610387714 @default.
- W3214294465 hasRelatedWork W3135646670 @default.
- W3214294465 isParatext "false" @default.
- W3214294465 isRetracted "false" @default.
- W3214294465 magId "3214294465" @default.
- W3214294465 workType "article" @default.