Matches in SemOpenAlex for { <https://semopenalex.org/work/W3214311704> ?p ?o ?g. }
- W3214311704 endingPage "7540" @default.
- W3214311704 startingPage "7540" @default.
- W3214311704 abstract "Existing wearable systems that use G-sensors to identify daily activities have been widely applied for medical, sports and military applications, while body temperature as an obvious physical characteristic that has rarely been considered in the system design and relative applications of HAR. In the context of the normalization of COVID-19, the prevention and control of the epidemic has become a top priority. Temperature monitoring plays an important role in the preliminary screening of the population for fever. Therefore, this paper proposes a wearable device embedded with inertial and temperature sensors that is used to apply human behavior recognition (HAR) to body surface temperature detection for body temperature monitoring and adjustment by evaluating recognition algorithms. The sensing system consists of an STM 32-based microcontroller, a 6-axis (accelerometer and gyroscope) sensor, and a temperature sensor to capture the original data from 10 individual participants under 4 different daily activity scenarios. Then, the collected raw data are pre-processed by signal standardization, data stacking and resampling. For HAR, several machine learning (ML) and deep learning (DL) algorithms are implemented to classify the activities. To compare the performance of different classifiers on the seven-dimensional dataset with temperature sensing signals, evaluation metrics and the algorithm running time are considered, and random forest (RF) is found to be the best-performing classifier with 88.78% recognition accuracy, which is higher than the case of the absence of temperature data (<78%). In addition, the experimental results show that participants' body surface temperature in dynamic activities was lower compared to sitting, which can be associated with the possible missing fever population due to temperature deviations in COVID-19 prevention. According to different individual activities, epidemic prevention workers are supposed to infer the corresponding standard normal body temperature of a patient by referring to the specific values of the mean expectation and variance in the normal distribution curve provided in this paper." @default.
- W3214311704 created "2021-11-22" @default.
- W3214311704 creator A5038031193 @default.
- W3214311704 creator A5042984715 @default.
- W3214311704 creator A5060655029 @default.
- W3214311704 creator A5081075818 @default.
- W3214311704 creator A5090100219 @default.
- W3214311704 creator A5091244614 @default.
- W3214311704 date "2021-11-12" @default.
- W3214311704 modified "2023-10-12" @default.
- W3214311704 title "Body Temperature Monitoring for Regular COVID-19 Prevention Based on Human Daily Activity Recognition" @default.
- W3214311704 cites W1979913980 @default.
- W3214311704 cites W2054780155 @default.
- W3214311704 cites W2058501113 @default.
- W3214311704 cites W2548358476 @default.
- W3214311704 cites W2596340169 @default.
- W3214311704 cites W2625625371 @default.
- W3214311704 cites W2795615756 @default.
- W3214311704 cites W2797760888 @default.
- W3214311704 cites W2800412969 @default.
- W3214311704 cites W2804739511 @default.
- W3214311704 cites W2904167941 @default.
- W3214311704 cites W2907645853 @default.
- W3214311704 cites W2944465621 @default.
- W3214311704 cites W2948975938 @default.
- W3214311704 cites W2952921651 @default.
- W3214311704 cites W2965830618 @default.
- W3214311704 cites W2969825170 @default.
- W3214311704 cites W2998314426 @default.
- W3214311704 cites W3002469388 @default.
- W3214311704 cites W3006386101 @default.
- W3214311704 cites W3008278658 @default.
- W3214311704 cites W3010153341 @default.
- W3214311704 cites W3017181332 @default.
- W3214311704 cites W3020687048 @default.
- W3214311704 cites W3022222380 @default.
- W3214311704 cites W3023340129 @default.
- W3214311704 cites W3028189778 @default.
- W3214311704 cites W3033040110 @default.
- W3214311704 cites W3047536849 @default.
- W3214311704 cites W3066888720 @default.
- W3214311704 cites W3084255915 @default.
- W3214311704 cites W3089186933 @default.
- W3214311704 cites W3116998974 @default.
- W3214311704 cites W3129261029 @default.
- W3214311704 cites W3131159058 @default.
- W3214311704 cites W3131917172 @default.
- W3214311704 cites W3160004655 @default.
- W3214311704 cites W3162117785 @default.
- W3214311704 doi "https://doi.org/10.3390/s21227540" @default.
- W3214311704 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8622194" @default.
- W3214311704 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34833616" @default.
- W3214311704 hasPublicationYear "2021" @default.
- W3214311704 type Work @default.
- W3214311704 sameAs 3214311704 @default.
- W3214311704 citedByCount "16" @default.
- W3214311704 countsByYear W32143117042022 @default.
- W3214311704 countsByYear W32143117042023 @default.
- W3214311704 crossrefType "journal-article" @default.
- W3214311704 hasAuthorship W3214311704A5038031193 @default.
- W3214311704 hasAuthorship W3214311704A5042984715 @default.
- W3214311704 hasAuthorship W3214311704A5060655029 @default.
- W3214311704 hasAuthorship W3214311704A5081075818 @default.
- W3214311704 hasAuthorship W3214311704A5090100219 @default.
- W3214311704 hasAuthorship W3214311704A5091244614 @default.
- W3214311704 hasBestOaLocation W32143117041 @default.
- W3214311704 hasConcept C111919701 @default.
- W3214311704 hasConcept C119857082 @default.
- W3214311704 hasConcept C121687571 @default.
- W3214311704 hasConcept C127413603 @default.
- W3214311704 hasConcept C136886441 @default.
- W3214311704 hasConcept C144024400 @default.
- W3214311704 hasConcept C146978453 @default.
- W3214311704 hasConcept C149635348 @default.
- W3214311704 hasConcept C150594956 @default.
- W3214311704 hasConcept C154945302 @default.
- W3214311704 hasConcept C158488048 @default.
- W3214311704 hasConcept C169258074 @default.
- W3214311704 hasConcept C19165224 @default.
- W3214311704 hasConcept C2908647359 @default.
- W3214311704 hasConcept C41008148 @default.
- W3214311704 hasConcept C71924100 @default.
- W3214311704 hasConcept C89805583 @default.
- W3214311704 hasConcept C99454951 @default.
- W3214311704 hasConceptScore W3214311704C111919701 @default.
- W3214311704 hasConceptScore W3214311704C119857082 @default.
- W3214311704 hasConceptScore W3214311704C121687571 @default.
- W3214311704 hasConceptScore W3214311704C127413603 @default.
- W3214311704 hasConceptScore W3214311704C136886441 @default.
- W3214311704 hasConceptScore W3214311704C144024400 @default.
- W3214311704 hasConceptScore W3214311704C146978453 @default.
- W3214311704 hasConceptScore W3214311704C149635348 @default.
- W3214311704 hasConceptScore W3214311704C150594956 @default.
- W3214311704 hasConceptScore W3214311704C154945302 @default.
- W3214311704 hasConceptScore W3214311704C158488048 @default.
- W3214311704 hasConceptScore W3214311704C169258074 @default.
- W3214311704 hasConceptScore W3214311704C19165224 @default.
- W3214311704 hasConceptScore W3214311704C2908647359 @default.