Matches in SemOpenAlex for { <https://semopenalex.org/work/W3214491504> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W3214491504 abstract "Malware remains a major threat, starting from home users to big business. That makes it a subject of hot study. Malware detection is achieved by means of static and dynamic study of malware signatures and activity patterns. These are shown to be ineffective and time consuming when unknown malware is being found. Many machine learning algorithms are created to recognize the new malware. Feature engineering is a crucial step in the construction of those algorithms. Which takes too long. This move can be wholly avoided by using deep learning techniques. Recent research has confirmed that many of them used skewed data collection, which in real-time circumstances is totally ineffective. Hence, this drives to build a new algorithm / architecture to use deep learning to detect malware. Using advanced Convolutional Neural Networks to identify patterns in malware sequences, using the weight sharing principle. We may catch recurring trends in malware by integrating this with Recurrent Neural Networks, too." @default.
- W3214491504 created "2021-11-22" @default.
- W3214491504 creator A5025493181 @default.
- W3214491504 creator A5051090717 @default.
- W3214491504 creator A5073701796 @default.
- W3214491504 creator A5076326302 @default.
- W3214491504 creator A5076783748 @default.
- W3214491504 creator A5076935957 @default.
- W3214491504 date "2021-09-22" @default.
- W3214491504 modified "2023-10-16" @default.
- W3214491504 title "Classification of Malware using Deep Learning Techniques" @default.
- W3214491504 cites W1545528966 @default.
- W3214491504 cites W1553801604 @default.
- W3214491504 cites W1966948031 @default.
- W3214491504 cites W2005662348 @default.
- W3214491504 cites W2010065958 @default.
- W3214491504 cites W2018883309 @default.
- W3214491504 cites W2031254140 @default.
- W3214491504 cites W2065311994 @default.
- W3214491504 cites W2083183119 @default.
- W3214491504 cites W2108700604 @default.
- W3214491504 cites W2129710685 @default.
- W3214491504 cites W2138644293 @default.
- W3214491504 cites W2508015754 @default.
- W3214491504 cites W2518866423 @default.
- W3214491504 cites W2591102410 @default.
- W3214491504 cites W2603093875 @default.
- W3214491504 cites W2931858311 @default.
- W3214491504 cites W2938888905 @default.
- W3214491504 doi "https://doi.org/10.1109/citsm52892.2021.9588795" @default.
- W3214491504 hasPublicationYear "2021" @default.
- W3214491504 type Work @default.
- W3214491504 sameAs 3214491504 @default.
- W3214491504 citedByCount "3" @default.
- W3214491504 countsByYear W32144915042020 @default.
- W3214491504 countsByYear W32144915042022 @default.
- W3214491504 countsByYear W32144915042023 @default.
- W3214491504 crossrefType "proceedings-article" @default.
- W3214491504 hasAuthorship W3214491504A5025493181 @default.
- W3214491504 hasAuthorship W3214491504A5051090717 @default.
- W3214491504 hasAuthorship W3214491504A5073701796 @default.
- W3214491504 hasAuthorship W3214491504A5076326302 @default.
- W3214491504 hasAuthorship W3214491504A5076783748 @default.
- W3214491504 hasAuthorship W3214491504A5076935957 @default.
- W3214491504 hasConcept C108583219 @default.
- W3214491504 hasConcept C119857082 @default.
- W3214491504 hasConcept C138885662 @default.
- W3214491504 hasConcept C154945302 @default.
- W3214491504 hasConcept C2776401178 @default.
- W3214491504 hasConcept C2778827112 @default.
- W3214491504 hasConcept C2779395397 @default.
- W3214491504 hasConcept C38652104 @default.
- W3214491504 hasConcept C41008148 @default.
- W3214491504 hasConcept C41895202 @default.
- W3214491504 hasConcept C50644808 @default.
- W3214491504 hasConcept C541664917 @default.
- W3214491504 hasConcept C81363708 @default.
- W3214491504 hasConceptScore W3214491504C108583219 @default.
- W3214491504 hasConceptScore W3214491504C119857082 @default.
- W3214491504 hasConceptScore W3214491504C138885662 @default.
- W3214491504 hasConceptScore W3214491504C154945302 @default.
- W3214491504 hasConceptScore W3214491504C2776401178 @default.
- W3214491504 hasConceptScore W3214491504C2778827112 @default.
- W3214491504 hasConceptScore W3214491504C2779395397 @default.
- W3214491504 hasConceptScore W3214491504C38652104 @default.
- W3214491504 hasConceptScore W3214491504C41008148 @default.
- W3214491504 hasConceptScore W3214491504C41895202 @default.
- W3214491504 hasConceptScore W3214491504C50644808 @default.
- W3214491504 hasConceptScore W3214491504C541664917 @default.
- W3214491504 hasConceptScore W3214491504C81363708 @default.
- W3214491504 hasLocation W32144915041 @default.
- W3214491504 hasOpenAccess W3214491504 @default.
- W3214491504 hasPrimaryLocation W32144915041 @default.
- W3214491504 hasRelatedWork W2931858311 @default.
- W3214491504 hasRelatedWork W2942650110 @default.
- W3214491504 hasRelatedWork W2968586400 @default.
- W3214491504 hasRelatedWork W3021430260 @default.
- W3214491504 hasRelatedWork W3214491504 @default.
- W3214491504 hasRelatedWork W4281986673 @default.
- W3214491504 hasRelatedWork W4312417841 @default.
- W3214491504 hasRelatedWork W4313563103 @default.
- W3214491504 hasRelatedWork W4321369474 @default.
- W3214491504 hasRelatedWork W3201597513 @default.
- W3214491504 isParatext "false" @default.
- W3214491504 isRetracted "false" @default.
- W3214491504 magId "3214491504" @default.
- W3214491504 workType "article" @default.