Matches in SemOpenAlex for { <https://semopenalex.org/work/W3214492058> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W3214492058 abstract "Thanks to the innovations in Artificial Intelligence, the autonomous driving field experienced an enormous growth in recent years, opening the road to a new safe and efficient way of conceiving transportation. One of the most challenging aspects is designing a driverless car able to safely navigate the highway. A particularly critical maneuver is merging in the highway traffic coming from an on-ramp, which will be the focus of this thesis. The described task is an highly interactive process, that requires an advanced level of cooperation between drivers. In similar cases, machine learning techniques have demonstrated to be more efficient than manually designed rule-based approaches. In particular, in this work we consider the Imitation Learning (IL) approach, whose objective is to learn how to perform a task by imitating the demonstrations of an expert. The result is a policy that the agent can follow to perform as similar as possible to the expert. Behavioral Cloning (BC) and Inverse Reinforcement Learning (IRL) are the two main approaches in Imitation Learning. The former uses supervised learning to find a policy that imitates the expert. This method is simple and efficient but it suffers from cascading error. The latter, instead, resorts to methods of solving an MDP when the reward function is unknown. This approach allows to learn a reward function, that constitutes a transferable representation of the desired behavior, but it is computationally more expensive and requires the knowledge of the model dynamics. The imitation technique proposed in this thesis builds on the Behavioral Cloning approach and augments it with a safety filter that covers the cascading error issue. This approach preserves the benefits of using a BC-based technique, while overcoming its limitations with an additional controller to ensure safety. In this work, we explore the state-of-the-art of Imitation Learning, present our method and analyze the results of applying it to the highway merging scenario." @default.
- W3214492058 created "2021-11-22" @default.
- W3214492058 creator A5044324996 @default.
- W3214492058 date "2020-11-30" @default.
- W3214492058 modified "2023-09-27" @default.
- W3214492058 title "Imitation Learning for Autonomous Highway Merging with Safety Guarantees" @default.
- W3214492058 doi "https://doi.org/10.25417/uic.14134373.v1" @default.
- W3214492058 hasPublicationYear "2020" @default.
- W3214492058 type Work @default.
- W3214492058 sameAs 3214492058 @default.
- W3214492058 citedByCount "0" @default.
- W3214492058 crossrefType "dissertation" @default.
- W3214492058 hasAuthorship W3214492058A5044324996 @default.
- W3214492058 hasConcept C107457646 @default.
- W3214492058 hasConcept C111919701 @default.
- W3214492058 hasConcept C119857082 @default.
- W3214492058 hasConcept C121050878 @default.
- W3214492058 hasConcept C126388530 @default.
- W3214492058 hasConcept C127413603 @default.
- W3214492058 hasConcept C14036430 @default.
- W3214492058 hasConcept C154945302 @default.
- W3214492058 hasConcept C15744967 @default.
- W3214492058 hasConcept C17744445 @default.
- W3214492058 hasConcept C199360897 @default.
- W3214492058 hasConcept C199539241 @default.
- W3214492058 hasConcept C201995342 @default.
- W3214492058 hasConcept C202444582 @default.
- W3214492058 hasConcept C2776359362 @default.
- W3214492058 hasConcept C2780451532 @default.
- W3214492058 hasConcept C33923547 @default.
- W3214492058 hasConcept C41008148 @default.
- W3214492058 hasConcept C77805123 @default.
- W3214492058 hasConcept C78458016 @default.
- W3214492058 hasConcept C86803240 @default.
- W3214492058 hasConcept C94625758 @default.
- W3214492058 hasConcept C9652623 @default.
- W3214492058 hasConcept C97541855 @default.
- W3214492058 hasConcept C98045186 @default.
- W3214492058 hasConceptScore W3214492058C107457646 @default.
- W3214492058 hasConceptScore W3214492058C111919701 @default.
- W3214492058 hasConceptScore W3214492058C119857082 @default.
- W3214492058 hasConceptScore W3214492058C121050878 @default.
- W3214492058 hasConceptScore W3214492058C126388530 @default.
- W3214492058 hasConceptScore W3214492058C127413603 @default.
- W3214492058 hasConceptScore W3214492058C14036430 @default.
- W3214492058 hasConceptScore W3214492058C154945302 @default.
- W3214492058 hasConceptScore W3214492058C15744967 @default.
- W3214492058 hasConceptScore W3214492058C17744445 @default.
- W3214492058 hasConceptScore W3214492058C199360897 @default.
- W3214492058 hasConceptScore W3214492058C199539241 @default.
- W3214492058 hasConceptScore W3214492058C201995342 @default.
- W3214492058 hasConceptScore W3214492058C202444582 @default.
- W3214492058 hasConceptScore W3214492058C2776359362 @default.
- W3214492058 hasConceptScore W3214492058C2780451532 @default.
- W3214492058 hasConceptScore W3214492058C33923547 @default.
- W3214492058 hasConceptScore W3214492058C41008148 @default.
- W3214492058 hasConceptScore W3214492058C77805123 @default.
- W3214492058 hasConceptScore W3214492058C78458016 @default.
- W3214492058 hasConceptScore W3214492058C86803240 @default.
- W3214492058 hasConceptScore W3214492058C94625758 @default.
- W3214492058 hasConceptScore W3214492058C9652623 @default.
- W3214492058 hasConceptScore W3214492058C97541855 @default.
- W3214492058 hasConceptScore W3214492058C98045186 @default.
- W3214492058 hasLocation W32144920581 @default.
- W3214492058 hasOpenAccess W3214492058 @default.
- W3214492058 hasPrimaryLocation W32144920581 @default.
- W3214492058 hasRelatedWork W1595483645 @default.
- W3214492058 hasRelatedWork W1980292999 @default.
- W3214492058 hasRelatedWork W2149738224 @default.
- W3214492058 hasRelatedWork W2158150115 @default.
- W3214492058 hasRelatedWork W2522275265 @default.
- W3214492058 hasRelatedWork W2563338958 @default.
- W3214492058 hasRelatedWork W2604173613 @default.
- W3214492058 hasRelatedWork W2626860042 @default.
- W3214492058 hasRelatedWork W276460289 @default.
- W3214492058 hasRelatedWork W2837605352 @default.
- W3214492058 hasRelatedWork W2910219310 @default.
- W3214492058 hasRelatedWork W2950600380 @default.
- W3214492058 hasRelatedWork W2996474936 @default.
- W3214492058 hasRelatedWork W3005607450 @default.
- W3214492058 hasRelatedWork W3084024636 @default.
- W3214492058 hasRelatedWork W3096277050 @default.
- W3214492058 hasRelatedWork W3097654316 @default.
- W3214492058 hasRelatedWork W3149922422 @default.
- W3214492058 hasRelatedWork W3209881631 @default.
- W3214492058 hasRelatedWork W3212409086 @default.
- W3214492058 isParatext "false" @default.
- W3214492058 isRetracted "false" @default.
- W3214492058 magId "3214492058" @default.
- W3214492058 workType "dissertation" @default.