Matches in SemOpenAlex for { <https://semopenalex.org/work/W3214510369> ?p ?o ?g. }
- W3214510369 endingPage "4557" @default.
- W3214510369 startingPage "4557" @default.
- W3214510369 abstract "From August to October 2020, a serious wildfire occurred in California, USA, which produced a large number of particulate matter and harmful gases, resulting in huge economic losses and environmental pollution. Particulate matter delays the GNSS signal, which affects the like precipitable water vapor (LPWV) derived by the GNSS non-hydrostatic delay. Most of the information of GNSS-derived LPWV is caused by water vapor, and a small part of the information is caused by particulate matter. A new method based on the difference (ΔPWV) between the PWV of virtual radiosonde stations network and GNSS-derived LPWV is proposed to detect the changes of particulate matter in the atmosphere during the 2020 California wildfires. There are few radiosonde stations in the experimental area and they are far away from the GNSS station. In order to solve this problem, we propose to use the multilayer perceptron (MLP) neural network method to establish the virtual radiosonde network in the experimental area. The PWV derived by the fifth-generation European center for medium-range weather forecasts reanalysis model (PWVERA5) is used as the input data of machine learning. The PWV derived by radiosonde data (PWVRAD) is used as the training target data of machine learning. The ΔPWV is obtained based on PWV derived by the virtual radiosonde station network and GNSS in the experimental area. In order to further reduce the influence of noise and other factors on ΔPWV, this paper attempts to decompose ΔPWV time series by using the singular spectrum analysis method, and obtain its principal components, subsequently, analyzing the relationship between the principal components of ΔPWV with particulate matter. The results indicate that the accuracy of PWV predicted by the virtual radiosonde network is significantly better than the fifth-generation European center for the medium-range weather forecast reanalysis model, and the change trend of ΔPWV is basically consistent with the change law of particulate matter in which the value of ΔPWV in the case of fire is significantly higher than that before and after the fire. The mean of correlation coefficients between ΔPWV and PM10 at each GNSS station before, during and after wildfires are 0.068, 0.397 and 0.065, respectively, which show the evident enhancement of the correlation between ΔPWV and particulate matter during wildfires. It is concluded that because of the high sensitiveness of ΔPWV to the change of particulate matter, the GNSS technique can be used as an effective new approach to detect the change of particulate matter and, then, to detect wildfires effectively." @default.
- W3214510369 created "2021-11-22" @default.
- W3214510369 creator A5058687112 @default.
- W3214510369 creator A5071984603 @default.
- W3214510369 creator A5075943675 @default.
- W3214510369 creator A5085254271 @default.
- W3214510369 creator A5085509114 @default.
- W3214510369 date "2021-11-12" @default.
- W3214510369 modified "2023-10-10" @default.
- W3214510369 title "Detection of Particulate Matter Changes Caused by 2020 California Wildfires Based on GNSS and Radiosonde Station" @default.
- W3214510369 cites W1625595678 @default.
- W3214510369 cites W1972872205 @default.
- W3214510369 cites W1976968558 @default.
- W3214510369 cites W1984247298 @default.
- W3214510369 cites W2027965421 @default.
- W3214510369 cites W2037856229 @default.
- W3214510369 cites W2076486392 @default.
- W3214510369 cites W2107442290 @default.
- W3214510369 cites W2109112231 @default.
- W3214510369 cites W2112306707 @default.
- W3214510369 cites W2125549928 @default.
- W3214510369 cites W2149913718 @default.
- W3214510369 cites W2152617724 @default.
- W3214510369 cites W2530960585 @default.
- W3214510369 cites W2585550812 @default.
- W3214510369 cites W2734953811 @default.
- W3214510369 cites W2754875904 @default.
- W3214510369 cites W2756426039 @default.
- W3214510369 cites W2802882664 @default.
- W3214510369 cites W2891351824 @default.
- W3214510369 cites W2901209197 @default.
- W3214510369 cites W2904135205 @default.
- W3214510369 cites W2997360387 @default.
- W3214510369 cites W2998608045 @default.
- W3214510369 cites W3025949386 @default.
- W3214510369 cites W3036144328 @default.
- W3214510369 cites W3036342343 @default.
- W3214510369 cites W3037394021 @default.
- W3214510369 cites W3046473952 @default.
- W3214510369 cites W3124880239 @default.
- W3214510369 cites W3125658497 @default.
- W3214510369 cites W3145689897 @default.
- W3214510369 cites W3160602444 @default.
- W3214510369 cites W3164192332 @default.
- W3214510369 cites W3185783781 @default.
- W3214510369 doi "https://doi.org/10.3390/rs13224557" @default.
- W3214510369 hasPublicationYear "2021" @default.
- W3214510369 type Work @default.
- W3214510369 sameAs 3214510369 @default.
- W3214510369 citedByCount "5" @default.
- W3214510369 countsByYear W32145103692022 @default.
- W3214510369 countsByYear W32145103692023 @default.
- W3214510369 crossrefType "journal-article" @default.
- W3214510369 hasAuthorship W3214510369A5058687112 @default.
- W3214510369 hasAuthorship W3214510369A5071984603 @default.
- W3214510369 hasAuthorship W3214510369A5075943675 @default.
- W3214510369 hasAuthorship W3214510369A5085254271 @default.
- W3214510369 hasAuthorship W3214510369A5085509114 @default.
- W3214510369 hasBestOaLocation W32145103691 @default.
- W3214510369 hasConcept C11999413 @default.
- W3214510369 hasConcept C14279187 @default.
- W3214510369 hasConcept C153294291 @default.
- W3214510369 hasConcept C18903297 @default.
- W3214510369 hasConcept C205649164 @default.
- W3214510369 hasConcept C24245907 @default.
- W3214510369 hasConcept C39432304 @default.
- W3214510369 hasConcept C41008148 @default.
- W3214510369 hasConcept C60229501 @default.
- W3214510369 hasConcept C62649853 @default.
- W3214510369 hasConcept C76155785 @default.
- W3214510369 hasConcept C86803240 @default.
- W3214510369 hasConceptScore W3214510369C11999413 @default.
- W3214510369 hasConceptScore W3214510369C14279187 @default.
- W3214510369 hasConceptScore W3214510369C153294291 @default.
- W3214510369 hasConceptScore W3214510369C18903297 @default.
- W3214510369 hasConceptScore W3214510369C205649164 @default.
- W3214510369 hasConceptScore W3214510369C24245907 @default.
- W3214510369 hasConceptScore W3214510369C39432304 @default.
- W3214510369 hasConceptScore W3214510369C41008148 @default.
- W3214510369 hasConceptScore W3214510369C60229501 @default.
- W3214510369 hasConceptScore W3214510369C62649853 @default.
- W3214510369 hasConceptScore W3214510369C76155785 @default.
- W3214510369 hasConceptScore W3214510369C86803240 @default.
- W3214510369 hasFunder F4320321001 @default.
- W3214510369 hasIssue "22" @default.
- W3214510369 hasLocation W32145103691 @default.
- W3214510369 hasLocation W32145103692 @default.
- W3214510369 hasOpenAccess W3214510369 @default.
- W3214510369 hasPrimaryLocation W32145103691 @default.
- W3214510369 hasRelatedWork W2028826403 @default.
- W3214510369 hasRelatedWork W2748952813 @default.
- W3214510369 hasRelatedWork W279123267 @default.
- W3214510369 hasRelatedWork W2899084033 @default.
- W3214510369 hasRelatedWork W2963748298 @default.
- W3214510369 hasRelatedWork W3046906717 @default.
- W3214510369 hasRelatedWork W3162875150 @default.
- W3214510369 hasRelatedWork W3188843269 @default.
- W3214510369 hasRelatedWork W3200675407 @default.