Matches in SemOpenAlex for { <https://semopenalex.org/work/W3214533654> ?p ?o ?g. }
- W3214533654 endingPage "112780" @default.
- W3214533654 startingPage "112780" @default.
- W3214533654 abstract "Deriving land cover from remotely sensed data is fundamental to many operational mapping and reporting programs as well as providing core information to support science activities. The ability to generate land cover maps has benefited from free and open access to imagery, as well as increased storage and computational power. The accuracy of the land cover maps is directly linked to the calibration (or training) data used, the predictors and ancillary data included in the classification model, and the implementation of the classification, among other factors (e.g., classification algorithm, land cover heterogeneity). Various means for improving calibration data can be implemented, including using independent datasets to further refine training data prior to mapping. Opportunities also arise from a profusion of possible calibration datasets from pre-existing land cover products (static and time series) and forest inventory maps through to observation from airborne and spaceborne lidar observations. In this research, for the 650 Mha forested ecosystems of Canada, we explored approaches to refine calibration data, integrate novel predictors, and optimize classifier implementation. We refined calibration data using measures of forest vertical structure, integrated novel spatial (via distance-to metrics) model predictors, and implemented a regionalized approach for optimizing training data selection and model-building to ensure local relevance of calibration data and capture of regional variability in land cover conditions. We found that additional vetting of training data involved the removal of 44.7% of erroneous samples (e.g. treed vegetation without vertical structure) from the training pool. Nationally, distance to ephemeral waterbodies was a key predictor of land cover, while the importance of distance to permanent water bodies varied on a regional basis. Regionalization of model implementation ensured that classification models used locally relevant descriptors and resulted in improved classification outcomes (overall accuracy: 77.9% ± 1.4%) compared to a generalized, national model (70.3% ± 2.5%). The methodological developments presented herein are portable to other land cover projects, monitoring programs, and remotely sensed data sources. The increasing availability of remotely sensed data for land cover mapping, as well as non-image data for aiding with model development (from calibration data to complementary spatial data layers) provide new opportunities to improve and further automate land cover mapping procedures." @default.
- W3214533654 created "2021-11-22" @default.
- W3214533654 creator A5015823688 @default.
- W3214533654 creator A5021319086 @default.
- W3214533654 creator A5051219165 @default.
- W3214533654 creator A5077764827 @default.
- W3214533654 date "2022-01-01" @default.
- W3214533654 modified "2023-09-30" @default.
- W3214533654 title "Land cover classification in an era of big and open data: Optimizing localized implementation and training data selection to improve mapping outcomes" @default.
- W3214533654 cites W1549773070 @default.
- W3214533654 cites W1730937402 @default.
- W3214533654 cites W1889848888 @default.
- W3214533654 cites W1964302861 @default.
- W3214533654 cites W1967400946 @default.
- W3214533654 cites W1971109292 @default.
- W3214533654 cites W1974092530 @default.
- W3214533654 cites W1980764738 @default.
- W3214533654 cites W1981646498 @default.
- W3214533654 cites W1987882549 @default.
- W3214533654 cites W1995581599 @default.
- W3214533654 cites W1998979050 @default.
- W3214533654 cites W2011500029 @default.
- W3214533654 cites W2012327117 @default.
- W3214533654 cites W2022555621 @default.
- W3214533654 cites W2022664803 @default.
- W3214533654 cites W2031600437 @default.
- W3214533654 cites W2034443267 @default.
- W3214533654 cites W2048204427 @default.
- W3214533654 cites W2053886687 @default.
- W3214533654 cites W2056303708 @default.
- W3214533654 cites W2063623478 @default.
- W3214533654 cites W2063789326 @default.
- W3214533654 cites W2067049630 @default.
- W3214533654 cites W2067453517 @default.
- W3214533654 cites W2086941309 @default.
- W3214533654 cites W2090491989 @default.
- W3214533654 cites W2094171467 @default.
- W3214533654 cites W2095410437 @default.
- W3214533654 cites W2105770001 @default.
- W3214533654 cites W2106584184 @default.
- W3214533654 cites W2113410727 @default.
- W3214533654 cites W2114828048 @default.
- W3214533654 cites W2125364413 @default.
- W3214533654 cites W2129615945 @default.
- W3214533654 cites W2132424470 @default.
- W3214533654 cites W2134721717 @default.
- W3214533654 cites W2139570512 @default.
- W3214533654 cites W2140908571 @default.
- W3214533654 cites W2150913843 @default.
- W3214533654 cites W2151456308 @default.
- W3214533654 cites W2159352923 @default.
- W3214533654 cites W2161570034 @default.
- W3214533654 cites W2170804038 @default.
- W3214533654 cites W2188083314 @default.
- W3214533654 cites W2244457783 @default.
- W3214533654 cites W2261059368 @default.
- W3214533654 cites W2307094448 @default.
- W3214533654 cites W2439576902 @default.
- W3214533654 cites W2482464033 @default.
- W3214533654 cites W2539651710 @default.
- W3214533654 cites W2540777836 @default.
- W3214533654 cites W2548753368 @default.
- W3214533654 cites W2553544826 @default.
- W3214533654 cites W2568967893 @default.
- W3214533654 cites W2581906016 @default.
- W3214533654 cites W2588158318 @default.
- W3214533654 cites W2604292667 @default.
- W3214533654 cites W2619820913 @default.
- W3214533654 cites W2625380067 @default.
- W3214533654 cites W2725897987 @default.
- W3214533654 cites W2743875756 @default.
- W3214533654 cites W2754093725 @default.
- W3214533654 cites W2755090963 @default.
- W3214533654 cites W2782548987 @default.
- W3214533654 cites W2792092426 @default.
- W3214533654 cites W2794891691 @default.
- W3214533654 cites W2795268736 @default.
- W3214533654 cites W2888154665 @default.
- W3214533654 cites W2891721681 @default.
- W3214533654 cites W2896975324 @default.
- W3214533654 cites W2897285410 @default.
- W3214533654 cites W2901674962 @default.
- W3214533654 cites W2906181209 @default.
- W3214533654 cites W2914733791 @default.
- W3214533654 cites W2953011380 @default.
- W3214533654 cites W2967165937 @default.
- W3214533654 cites W2972170785 @default.
- W3214533654 cites W2973049108 @default.
- W3214533654 cites W2973204274 @default.
- W3214533654 cites W3003509779 @default.
- W3214533654 cites W3004741759 @default.
- W3214533654 cites W3008834779 @default.
- W3214533654 cites W3034892684 @default.
- W3214533654 cites W3041849717 @default.
- W3214533654 cites W3046216337 @default.
- W3214533654 cites W3091428573 @default.
- W3214533654 cites W3104341624 @default.
- W3214533654 cites W3106486436 @default.