Matches in SemOpenAlex for { <https://semopenalex.org/work/W3214541433> ?p ?o ?g. }
- W3214541433 endingPage "113497" @default.
- W3214541433 startingPage "113497" @default.
- W3214541433 abstract "This study pioneers the application of machine learning (ML) for predicting the bearing strength of double shear bolted connections in structural steel. For the first time, a comprehensive database comprising 443 experimental datasets was compiled, with input features including the normalized end distance, edge distance, bolt pitch along and transverse to the loading directions of the connection, ultimate-to-yield strength ratio of the steel plate, number of bolt rows, connection configuration and normalized bearing capacity. Eleven ML techniques were explored for this application. Feature importance analysis identified the normalized end and edge distances as the most influential parameters on the ultimate bearing capacity. The performance of the models was evaluated using various statistical metrics and compared with existing formulations and design code provisions. Among all ML models, Random Forest was the best performing model, attaining the highest coefficient of determination (0.88), lowest mean absolute error (0.14), and lowest mean square error (0.26). Unlike existing models that are specific to certain steel grades and provide different equations for different failure modes, ML models accomplished an integrated and generalized predictive approach with an acceptable level of accuracy. Interestingly, ML models revealed that the ultimate-to-yield strength ratio of steel and the numbers of bolt rows, which are currently ignored by design guidelines, do influence the bearing strength significantly (nearly 10% each). A user-friendly interface comprising all proposed ML algorithms was developed to ease the design process of double shear bolted connections and serve as an educational and research tool for applying ML techniques to predicting the bearing strength of double shear bolted connections." @default.
- W3214541433 created "2021-11-22" @default.
- W3214541433 creator A5013993041 @default.
- W3214541433 creator A5029155757 @default.
- W3214541433 creator A5059618495 @default.
- W3214541433 creator A5076326557 @default.
- W3214541433 creator A5087555983 @default.
- W3214541433 date "2022-01-01" @default.
- W3214541433 modified "2023-09-30" @default.
- W3214541433 title "Predicting bearing capacity of double shear bolted connections using machine learning" @default.
- W3214541433 cites W1860518902 @default.
- W3214541433 cites W1985479415 @default.
- W3214541433 cites W1988345002 @default.
- W3214541433 cites W2009620296 @default.
- W3214541433 cites W2013566295 @default.
- W3214541433 cites W2023350629 @default.
- W3214541433 cites W2041779820 @default.
- W3214541433 cites W2056858490 @default.
- W3214541433 cites W2060601412 @default.
- W3214541433 cites W2068315141 @default.
- W3214541433 cites W2081625431 @default.
- W3214541433 cites W2089383408 @default.
- W3214541433 cites W2142966932 @default.
- W3214541433 cites W2146885460 @default.
- W3214541433 cites W2159469532 @default.
- W3214541433 cites W2290145898 @default.
- W3214541433 cites W2419401130 @default.
- W3214541433 cites W2569935545 @default.
- W3214541433 cites W2744291846 @default.
- W3214541433 cites W2788697198 @default.
- W3214541433 cites W2799765678 @default.
- W3214541433 cites W2897833541 @default.
- W3214541433 cites W2907223767 @default.
- W3214541433 cites W2933395587 @default.
- W3214541433 cites W2947332687 @default.
- W3214541433 cites W2964772981 @default.
- W3214541433 cites W2981416566 @default.
- W3214541433 cites W2981990834 @default.
- W3214541433 cites W2983825384 @default.
- W3214541433 cites W2987181511 @default.
- W3214541433 cites W2994906127 @default.
- W3214541433 cites W3006597564 @default.
- W3214541433 cites W3010736684 @default.
- W3214541433 cites W3013155739 @default.
- W3214541433 cites W3016857171 @default.
- W3214541433 cites W3016906269 @default.
- W3214541433 cites W3024221289 @default.
- W3214541433 cites W3036246077 @default.
- W3214541433 cites W3096922386 @default.
- W3214541433 cites W3107262792 @default.
- W3214541433 cites W3131046868 @default.
- W3214541433 cites W3137503852 @default.
- W3214541433 cites W4234698323 @default.
- W3214541433 cites W4243353415 @default.
- W3214541433 cites W4244190327 @default.
- W3214541433 doi "https://doi.org/10.1016/j.engstruct.2021.113497" @default.
- W3214541433 hasPublicationYear "2022" @default.
- W3214541433 type Work @default.
- W3214541433 sameAs 3214541433 @default.
- W3214541433 citedByCount "11" @default.
- W3214541433 countsByYear W32145414332022 @default.
- W3214541433 countsByYear W32145414332023 @default.
- W3214541433 crossrefType "journal-article" @default.
- W3214541433 hasAuthorship W3214541433A5013993041 @default.
- W3214541433 hasAuthorship W3214541433A5029155757 @default.
- W3214541433 hasAuthorship W3214541433A5059618495 @default.
- W3214541433 hasAuthorship W3214541433A5076326557 @default.
- W3214541433 hasAuthorship W3214541433A5087555983 @default.
- W3214541433 hasConcept C105795698 @default.
- W3214541433 hasConcept C127413603 @default.
- W3214541433 hasConcept C134121241 @default.
- W3214541433 hasConcept C135598885 @default.
- W3214541433 hasConcept C135677250 @default.
- W3214541433 hasConcept C139945424 @default.
- W3214541433 hasConcept C154945302 @default.
- W3214541433 hasConcept C154954056 @default.
- W3214541433 hasConcept C159985019 @default.
- W3214541433 hasConcept C192562407 @default.
- W3214541433 hasConcept C199978012 @default.
- W3214541433 hasConcept C33923547 @default.
- W3214541433 hasConcept C41008148 @default.
- W3214541433 hasConcept C66938386 @default.
- W3214541433 hasConcept C77088390 @default.
- W3214541433 hasConcept C96035792 @default.
- W3214541433 hasConceptScore W3214541433C105795698 @default.
- W3214541433 hasConceptScore W3214541433C127413603 @default.
- W3214541433 hasConceptScore W3214541433C134121241 @default.
- W3214541433 hasConceptScore W3214541433C135598885 @default.
- W3214541433 hasConceptScore W3214541433C135677250 @default.
- W3214541433 hasConceptScore W3214541433C139945424 @default.
- W3214541433 hasConceptScore W3214541433C154945302 @default.
- W3214541433 hasConceptScore W3214541433C154954056 @default.
- W3214541433 hasConceptScore W3214541433C159985019 @default.
- W3214541433 hasConceptScore W3214541433C192562407 @default.
- W3214541433 hasConceptScore W3214541433C199978012 @default.
- W3214541433 hasConceptScore W3214541433C33923547 @default.
- W3214541433 hasConceptScore W3214541433C41008148 @default.
- W3214541433 hasConceptScore W3214541433C66938386 @default.