Matches in SemOpenAlex for { <https://semopenalex.org/work/W3214669811> ?p ?o ?g. }
- W3214669811 endingPage "42" @default.
- W3214669811 startingPage "1" @default.
- W3214669811 abstract "Longitudinal item response data are common in social science, educational science, and psychology, among other disciplines. Studying the time-varying relationships between items is crucial for educational assessment or designing marketing strategies from survey questions. Although dynamic network models have been widely developed, we cannot apply them directly to item response data because there are multiple systems of nodes with various types of local interactions among items, resulting in multiplex network structures. We propose a new model to study these temporal interactions among items by embedding the functional parameters within the exponential random graph model framework. Inference on such models is difficult because the likelihood functions contain intractable normalizing constants. Furthermore, the number of functional parameters grows exponentially as the number of items increases. Variable selection for such models is not trivial because standard shrinkage approaches do not consider temporal trends in functional parameters. To overcome these challenges, we develop a novel Bayes approach by combining an auxiliary variable MCMC algorithm and a recently-developed functional shrinkage method. We apply our algorithm to survey and review data sets, illustrating that the proposed approach can avoid the evaluation of intractable normalizing constants as well as the detection of significant temporal interactions among items. Through a simulation study under different scenarios, we examine the performance of our algorithm. Our method is, to our knowledge, the first attempt to select functional variables for models with intractable normalizing constants." @default.
- W3214669811 created "2021-11-22" @default.
- W3214669811 creator A5026534904 @default.
- W3214669811 creator A5037331314 @default.
- W3214669811 creator A5042710868 @default.
- W3214669811 creator A5043640771 @default.
- W3214669811 creator A5044502209 @default.
- W3214669811 date "2021-11-04" @default.
- W3214669811 modified "2023-10-18" @default.
- W3214669811 title "Bayesian Shrinkage for Functional Network Models, with Applications to Longitudinal Item Response Data" @default.
- W3214669811 cites W1188302780 @default.
- W3214669811 cites W1680396847 @default.
- W3214669811 cites W1970034774 @default.
- W3214669811 cites W1982508956 @default.
- W3214669811 cites W1984048068 @default.
- W3214669811 cites W1987997654 @default.
- W3214669811 cites W2007069447 @default.
- W3214669811 cites W2015530535 @default.
- W3214669811 cites W2060236999 @default.
- W3214669811 cites W2066459332 @default.
- W3214669811 cites W2074032262 @default.
- W3214669811 cites W2114169935 @default.
- W3214669811 cites W2145402497 @default.
- W3214669811 cites W2160268549 @default.
- W3214669811 cites W2161975088 @default.
- W3214669811 cites W2162870748 @default.
- W3214669811 cites W2167482691 @default.
- W3214669811 cites W2180060901 @default.
- W3214669811 cites W2416432995 @default.
- W3214669811 cites W2581158580 @default.
- W3214669811 cites W2611220308 @default.
- W3214669811 cites W2805048085 @default.
- W3214669811 cites W2922084453 @default.
- W3214669811 cites W2949880283 @default.
- W3214669811 cites W2963021623 @default.
- W3214669811 cites W2968000259 @default.
- W3214669811 cites W3044727169 @default.
- W3214669811 cites W3098888484 @default.
- W3214669811 cites W3099078835 @default.
- W3214669811 cites W3099329193 @default.
- W3214669811 cites W3100410719 @default.
- W3214669811 cites W3103377809 @default.
- W3214669811 cites W3186241959 @default.
- W3214669811 cites W4234057457 @default.
- W3214669811 cites W4248681815 @default.
- W3214669811 doi "https://doi.org/10.1080/10618600.2021.1999823" @default.
- W3214669811 hasPublicationYear "2021" @default.
- W3214669811 type Work @default.
- W3214669811 sameAs 3214669811 @default.
- W3214669811 citedByCount "0" @default.
- W3214669811 crossrefType "journal-article" @default.
- W3214669811 hasAuthorship W3214669811A5026534904 @default.
- W3214669811 hasAuthorship W3214669811A5037331314 @default.
- W3214669811 hasAuthorship W3214669811A5042710868 @default.
- W3214669811 hasAuthorship W3214669811A5043640771 @default.
- W3214669811 hasAuthorship W3214669811A5044502209 @default.
- W3214669811 hasBestOaLocation W32146698112 @default.
- W3214669811 hasConcept C107673813 @default.
- W3214669811 hasConcept C119857082 @default.
- W3214669811 hasConcept C124101348 @default.
- W3214669811 hasConcept C132525143 @default.
- W3214669811 hasConcept C154945302 @default.
- W3214669811 hasConcept C160234255 @default.
- W3214669811 hasConcept C207201462 @default.
- W3214669811 hasConcept C2776214188 @default.
- W3214669811 hasConcept C30549945 @default.
- W3214669811 hasConcept C41008148 @default.
- W3214669811 hasConcept C47458327 @default.
- W3214669811 hasConcept C80444323 @default.
- W3214669811 hasConceptScore W3214669811C107673813 @default.
- W3214669811 hasConceptScore W3214669811C119857082 @default.
- W3214669811 hasConceptScore W3214669811C124101348 @default.
- W3214669811 hasConceptScore W3214669811C132525143 @default.
- W3214669811 hasConceptScore W3214669811C154945302 @default.
- W3214669811 hasConceptScore W3214669811C160234255 @default.
- W3214669811 hasConceptScore W3214669811C207201462 @default.
- W3214669811 hasConceptScore W3214669811C2776214188 @default.
- W3214669811 hasConceptScore W3214669811C30549945 @default.
- W3214669811 hasConceptScore W3214669811C41008148 @default.
- W3214669811 hasConceptScore W3214669811C47458327 @default.
- W3214669811 hasConceptScore W3214669811C80444323 @default.
- W3214669811 hasLocation W32146698111 @default.
- W3214669811 hasLocation W32146698112 @default.
- W3214669811 hasOpenAccess W3214669811 @default.
- W3214669811 hasPrimaryLocation W32146698111 @default.
- W3214669811 hasRelatedWork W185009585 @default.
- W3214669811 hasRelatedWork W1969165474 @default.
- W3214669811 hasRelatedWork W2016517455 @default.
- W3214669811 hasRelatedWork W2128527868 @default.
- W3214669811 hasRelatedWork W2350464527 @default.
- W3214669811 hasRelatedWork W2902946190 @default.
- W3214669811 hasRelatedWork W2911666059 @default.
- W3214669811 hasRelatedWork W636713712 @default.
- W3214669811 hasRelatedWork W71234659 @default.
- W3214669811 hasRelatedWork W96862169 @default.
- W3214669811 isParatext "false" @default.
- W3214669811 isRetracted "false" @default.
- W3214669811 magId "3214669811" @default.