Matches in SemOpenAlex for { <https://semopenalex.org/work/W3214672912> ?p ?o ?g. }
- W3214672912 endingPage "10388" @default.
- W3214672912 startingPage "10388" @default.
- W3214672912 abstract "Numerous investigations have been conducted to enhance the motor imagery-based brain–computer interface (BCI) classification performance on various aspects. However, there are limited studies comparing their proposed feature selection framework performance on both objective and subjective datasets. Therefore, this study aims to provide a novel framework that combines spatial filters at various frequency bands with double-layered feature selection and evaluates it on published and self-acquired datasets. Electroencephalography (EEG) data are preprocessed and decomposed into multiple frequency sub-bands, whose features are then extracted, calculated, and ranked based on Fisher’s ratio and minimum-redundancy-maximum-relevance (mRmR) algorithm. Informative filter banks are chosen for optimal classification by linear discriminative analysis (LDA). The results of the study, firstly, show that the proposed method is comparable to other conventional methods through accuracy and F1-score. The study also found that hand vs. feet classification is more discriminable than left vs. right hand (4–10% difference). Lastly, the performance of the filter banks common spatial pattern (FBCSP, without feature selection) algorithm is found to be significantly lower (p = 0.0029, p = 0.0015, and p = 0.0008) compared to that of the proposed method when applied to small-sized data." @default.
- W3214672912 created "2021-11-22" @default.
- W3214672912 creator A5020315205 @default.
- W3214672912 creator A5025821995 @default.
- W3214672912 creator A5049770707 @default.
- W3214672912 creator A5051842917 @default.
- W3214672912 creator A5084327952 @default.
- W3214672912 creator A5085329551 @default.
- W3214672912 date "2021-11-05" @default.
- W3214672912 modified "2023-09-27" @default.
- W3214672912 title "Evaluating the Motor Imagery Classification Performance of a Double-Layered Feature Selection on Two Different-Sized Datasets" @default.
- W3214672912 cites W1147354400 @default.
- W3214672912 cites W1564064088 @default.
- W3214672912 cites W1935917870 @default.
- W3214672912 cites W1979323406 @default.
- W3214672912 cites W1989513763 @default.
- W3214672912 cites W1997102466 @default.
- W3214672912 cites W2001725812 @default.
- W3214672912 cites W2010371409 @default.
- W3214672912 cites W2025445045 @default.
- W3214672912 cites W2025973704 @default.
- W3214672912 cites W2040028733 @default.
- W3214672912 cites W2046520025 @default.
- W3214672912 cites W2057311210 @default.
- W3214672912 cites W2059915684 @default.
- W3214672912 cites W2093250287 @default.
- W3214672912 cites W2094702568 @default.
- W3214672912 cites W2096786554 @default.
- W3214672912 cites W2116308679 @default.
- W3214672912 cites W2120026622 @default.
- W3214672912 cites W2142280324 @default.
- W3214672912 cites W2154053567 @default.
- W3214672912 cites W2164096208 @default.
- W3214672912 cites W2168500935 @default.
- W3214672912 cites W2168689324 @default.
- W3214672912 cites W2169100533 @default.
- W3214672912 cites W2171263752 @default.
- W3214672912 cites W2213712841 @default.
- W3214672912 cites W2225257439 @default.
- W3214672912 cites W2330841958 @default.
- W3214672912 cites W2354225344 @default.
- W3214672912 cites W2513539187 @default.
- W3214672912 cites W2518238252 @default.
- W3214672912 cites W2736583283 @default.
- W3214672912 cites W2765826006 @default.
- W3214672912 cites W2778861494 @default.
- W3214672912 cites W2794345050 @default.
- W3214672912 cites W2795869137 @default.
- W3214672912 cites W2801693427 @default.
- W3214672912 cites W2887397374 @default.
- W3214672912 cites W2905915376 @default.
- W3214672912 cites W2906965193 @default.
- W3214672912 cites W2907080401 @default.
- W3214672912 cites W2909776917 @default.
- W3214672912 cites W2914567046 @default.
- W3214672912 cites W2924079966 @default.
- W3214672912 cites W2925507233 @default.
- W3214672912 cites W2947451694 @default.
- W3214672912 cites W2947974121 @default.
- W3214672912 cites W2970075759 @default.
- W3214672912 cites W2990721662 @default.
- W3214672912 cites W2994422921 @default.
- W3214672912 cites W3026899257 @default.
- W3214672912 cites W3081132571 @default.
- W3214672912 cites W3106591870 @default.
- W3214672912 cites W3127694419 @default.
- W3214672912 cites W3134342164 @default.
- W3214672912 cites W3139270893 @default.
- W3214672912 cites W3211639992 @default.
- W3214672912 cites W3162618481 @default.
- W3214672912 doi "https://doi.org/10.3390/app112110388" @default.
- W3214672912 hasPublicationYear "2021" @default.
- W3214672912 type Work @default.
- W3214672912 sameAs 3214672912 @default.
- W3214672912 citedByCount "1" @default.
- W3214672912 countsByYear W32146729122023 @default.
- W3214672912 crossrefType "journal-article" @default.
- W3214672912 hasAuthorship W3214672912A5020315205 @default.
- W3214672912 hasAuthorship W3214672912A5025821995 @default.
- W3214672912 hasAuthorship W3214672912A5049770707 @default.
- W3214672912 hasAuthorship W3214672912A5051842917 @default.
- W3214672912 hasAuthorship W3214672912A5084327952 @default.
- W3214672912 hasAuthorship W3214672912A5085329551 @default.
- W3214672912 hasBestOaLocation W32146729121 @default.
- W3214672912 hasConcept C106131492 @default.
- W3214672912 hasConcept C111919701 @default.
- W3214672912 hasConcept C118552586 @default.
- W3214672912 hasConcept C12267149 @default.
- W3214672912 hasConcept C124101348 @default.
- W3214672912 hasConcept C138885662 @default.
- W3214672912 hasConcept C148483581 @default.
- W3214672912 hasConcept C152124472 @default.
- W3214672912 hasConcept C153180895 @default.
- W3214672912 hasConcept C154945302 @default.
- W3214672912 hasConcept C15744967 @default.
- W3214672912 hasConcept C173201364 @default.
- W3214672912 hasConcept C2776401178 @default.
- W3214672912 hasConcept C31972630 @default.