Matches in SemOpenAlex for { <https://semopenalex.org/work/W3214716715> ?p ?o ?g. }
- W3214716715 endingPage "422" @default.
- W3214716715 startingPage "407" @default.
- W3214716715 abstract "Following the recent successful examples of large technology companies, many modern enterprises seek to build Knowledge Graphs to provide a unified view of corporate knowledge, and to draw deep insights using machine learning and logical reasoning. There is currently a perceived disconnect between the traditional approaches for data science, typically based on machine learning and statistical modeling, and systems for reasoning with domain knowledge. In this paper, we demonstrate how to perform a broad spectrum of data science tasks in a unified Knowledge Graph environment. This includes data wrangling, complex logical and probabilistic reasoning, and machine learning. We base our work on the state-of-the-art Knowledge Graph Management System Vadalog, which delivers highly expressive and efficient logical reasoning and provides seamless integration with modern data science toolkits such as the Jupyter platform. We argue that this is a significant step forward towards practical, holistic data science workflows that combine machine learning and reasoning in data science." @default.
- W3214716715 created "2021-11-22" @default.
- W3214716715 creator A5000114117 @default.
- W3214716715 creator A5005697407 @default.
- W3214716715 creator A5008812580 @default.
- W3214716715 creator A5012243761 @default.
- W3214716715 creator A5012853792 @default.
- W3214716715 creator A5013115060 @default.
- W3214716715 creator A5049287242 @default.
- W3214716715 creator A5050151740 @default.
- W3214716715 creator A5065777566 @default.
- W3214716715 creator A5078679591 @default.
- W3214716715 creator A5082856719 @default.
- W3214716715 date "2022-04-01" @default.
- W3214716715 modified "2023-10-16" @default.
- W3214716715 title "Data science with Vadalog: Knowledge Graphs with machine learning and reasoning in practice" @default.
- W3214716715 cites W1824207140 @default.
- W3214716715 cites W1970782121 @default.
- W3214716715 cites W1971962972 @default.
- W3214716715 cites W1976055110 @default.
- W3214716715 cites W1977970897 @default.
- W3214716715 cites W1985581502 @default.
- W3214716715 cites W2001399171 @default.
- W3214716715 cites W2039941117 @default.
- W3214716715 cites W2076839769 @default.
- W3214716715 cites W2080133951 @default.
- W3214716715 cites W2102729564 @default.
- W3214716715 cites W2114541504 @default.
- W3214716715 cites W2123504579 @default.
- W3214716715 cites W2148317291 @default.
- W3214716715 cites W2153225416 @default.
- W3214716715 cites W2555256140 @default.
- W3214716715 cites W2744726626 @default.
- W3214716715 cites W2759067747 @default.
- W3214716715 cites W2788315304 @default.
- W3214716715 cites W2913389685 @default.
- W3214716715 cites W2958248471 @default.
- W3214716715 cites W3104305579 @default.
- W3214716715 cites W3121961986 @default.
- W3214716715 cites W811924890 @default.
- W3214716715 doi "https://doi.org/10.1016/j.future.2021.10.021" @default.
- W3214716715 hasPublicationYear "2022" @default.
- W3214716715 type Work @default.
- W3214716715 sameAs 3214716715 @default.
- W3214716715 citedByCount "6" @default.
- W3214716715 countsByYear W32147167152022 @default.
- W3214716715 countsByYear W32147167152023 @default.
- W3214716715 crossrefType "journal-article" @default.
- W3214716715 hasAuthorship W3214716715A5000114117 @default.
- W3214716715 hasAuthorship W3214716715A5005697407 @default.
- W3214716715 hasAuthorship W3214716715A5008812580 @default.
- W3214716715 hasAuthorship W3214716715A5012243761 @default.
- W3214716715 hasAuthorship W3214716715A5012853792 @default.
- W3214716715 hasAuthorship W3214716715A5013115060 @default.
- W3214716715 hasAuthorship W3214716715A5049287242 @default.
- W3214716715 hasAuthorship W3214716715A5050151740 @default.
- W3214716715 hasAuthorship W3214716715A5065777566 @default.
- W3214716715 hasAuthorship W3214716715A5078679591 @default.
- W3214716715 hasAuthorship W3214716715A5082856719 @default.
- W3214716715 hasConcept C119857082 @default.
- W3214716715 hasConcept C154945302 @default.
- W3214716715 hasConcept C177212765 @default.
- W3214716715 hasConcept C207685749 @default.
- W3214716715 hasConcept C2522767166 @default.
- W3214716715 hasConcept C2987255567 @default.
- W3214716715 hasConcept C41008148 @default.
- W3214716715 hasConcept C4554734 @default.
- W3214716715 hasConcept C49937458 @default.
- W3214716715 hasConcept C56289545 @default.
- W3214716715 hasConcept C77088390 @default.
- W3214716715 hasConceptScore W3214716715C119857082 @default.
- W3214716715 hasConceptScore W3214716715C154945302 @default.
- W3214716715 hasConceptScore W3214716715C177212765 @default.
- W3214716715 hasConceptScore W3214716715C207685749 @default.
- W3214716715 hasConceptScore W3214716715C2522767166 @default.
- W3214716715 hasConceptScore W3214716715C2987255567 @default.
- W3214716715 hasConceptScore W3214716715C41008148 @default.
- W3214716715 hasConceptScore W3214716715C4554734 @default.
- W3214716715 hasConceptScore W3214716715C49937458 @default.
- W3214716715 hasConceptScore W3214716715C56289545 @default.
- W3214716715 hasConceptScore W3214716715C77088390 @default.
- W3214716715 hasFunder F4320320006 @default.
- W3214716715 hasFunder F4320321003 @default.
- W3214716715 hasFunder F4320334627 @default.
- W3214716715 hasFunder F4320335254 @default.
- W3214716715 hasFunder F4320337671 @default.
- W3214716715 hasLocation W32147167151 @default.
- W3214716715 hasOpenAccess W3214716715 @default.
- W3214716715 hasPrimaryLocation W32147167151 @default.
- W3214716715 hasRelatedWork W1536779895 @default.
- W3214716715 hasRelatedWork W155346321 @default.
- W3214716715 hasRelatedWork W1994217843 @default.
- W3214716715 hasRelatedWork W2020036714 @default.
- W3214716715 hasRelatedWork W2086580554 @default.
- W3214716715 hasRelatedWork W2109464269 @default.
- W3214716715 hasRelatedWork W2367629516 @default.
- W3214716715 hasRelatedWork W2385621242 @default.
- W3214716715 hasRelatedWork W2553860513 @default.