Matches in SemOpenAlex for { <https://semopenalex.org/work/W3214720199> ?p ?o ?g. }
- W3214720199 abstract "ABSTRACT Clinical research in infectious respiratory diseases has been profoundly affected by non-pharmaceutical interventions (NPIs) against COVID-19. On top of trial delays or even discontinuation which have been observed in all disease areas, NPIs altered transmission pattern of many seasonal respiratory viruses which followed regular patterns for decades before the pandemic. Clinical trial design based on pre-pandemic historical data therefore needs to be put in question. In this article, we show how knowledge-based mathematical modeling can be used to address this issue. We set up an epidemiological model of respiratory tract infection (RTI) sensitive to a time dependent between-host transmission rate and coupled this model to a mechanistic description of viral RTI episodes in an individual patient. By reducing the transmission rate when the lockdown was introduced in the United Kingdom in March 2020, we were able to reproduce the perturbed 2020 RTI disease burden data. Using this setup, we simulated several NPIs scenarios of various strength (none, mild, medium, strong) and conducted placebo-controlled in silico clinical trials in pediatric patients with recurrent RTIs (RRTI) quantifying annual RTI rate distributions. In interventional arms, virtual patients aged 1-5 years received the bacterial lysate OM-85 (approved in several countries for the prevention of pediatric RRTIs) through a pro-type I immunomodulation mechanism of action described by a physiologically based pharmacokinetics and pharmacodynamics approach (PBPK/PD). Our predictions showed that sample size estimates based on the ratio of RTI rates (or the post-hoc power of fixed sample size trials) are not majorly impacted under NPIs which are less severe (none, mild and medium NPIs) than a strict lockdown (strong NPI). However, NPIs show a stronger impact on metrics more relevant for assessing the clinical relevance of the effect such as absolute benefit. This dichotomy shows the risk that successful trials (even with their primary endpoints being met) still get challenged in risk benefit assessment during the review of market authorization. Furthermore, we found that a mild NPI scenario already affected the time to recruit significantly when sticking to eligibility criteria complying with historical data. In summary, our model predictions can help rationalize and forecast post-COVID-19 trial feasibility. They advocate for gauging absolute and relative benefit metrics as well as clinical relevance for assessing efficacy hypotheses in trial design and they question eligibility criteria misaligned with the actual disease burden." @default.
- W3214720199 created "2021-11-22" @default.
- W3214720199 creator A5000732558 @default.
- W3214720199 creator A5006323989 @default.
- W3214720199 creator A5007108104 @default.
- W3214720199 creator A5009068592 @default.
- W3214720199 creator A5036810228 @default.
- W3214720199 creator A5037725946 @default.
- W3214720199 creator A5041850608 @default.
- W3214720199 creator A5048664886 @default.
- W3214720199 creator A5049128118 @default.
- W3214720199 creator A5052337424 @default.
- W3214720199 creator A5063317197 @default.
- W3214720199 creator A5064608531 @default.
- W3214720199 creator A5084829636 @default.
- W3214720199 date "2021-11-10" @default.
- W3214720199 modified "2023-10-17" @default.
- W3214720199 title "Viral kinetic modeling and clinical trial simulation predicts disruption of respiratory disease trials by non-pharmaceutical COVID-19 interventions" @default.
- W3214720199 cites W1412751811 @default.
- W3214720199 cites W1594927051 @default.
- W3214720199 cites W1975254278 @default.
- W3214720199 cites W1976071270 @default.
- W3214720199 cites W1980140122 @default.
- W3214720199 cites W2007689247 @default.
- W3214720199 cites W2008549068 @default.
- W3214720199 cites W2012198032 @default.
- W3214720199 cites W2015218127 @default.
- W3214720199 cites W2045469218 @default.
- W3214720199 cites W2071353267 @default.
- W3214720199 cites W2077156951 @default.
- W3214720199 cites W2093097167 @default.
- W3214720199 cites W2095542631 @default.
- W3214720199 cites W2100213958 @default.
- W3214720199 cites W2101792112 @default.
- W3214720199 cites W2104875598 @default.
- W3214720199 cites W2107103600 @default.
- W3214720199 cites W2119986866 @default.
- W3214720199 cites W2147657405 @default.
- W3214720199 cites W2148301044 @default.
- W3214720199 cites W2156031553 @default.
- W3214720199 cites W2165405120 @default.
- W3214720199 cites W2330094692 @default.
- W3214720199 cites W2589292690 @default.
- W3214720199 cites W2769544189 @default.
- W3214720199 cites W2806810105 @default.
- W3214720199 cites W2899634320 @default.
- W3214720199 cites W2910555254 @default.
- W3214720199 cites W2917584170 @default.
- W3214720199 cites W2964420195 @default.
- W3214720199 cites W3013080757 @default.
- W3214720199 cites W3015988827 @default.
- W3214720199 cites W3025989244 @default.
- W3214720199 cites W3040478087 @default.
- W3214720199 cites W3044354479 @default.
- W3214720199 cites W3048190508 @default.
- W3214720199 cites W3082455468 @default.
- W3214720199 cites W3087918521 @default.
- W3214720199 cites W3089299500 @default.
- W3214720199 cites W3091584968 @default.
- W3214720199 cites W3112301859 @default.
- W3214720199 cites W3119631793 @default.
- W3214720199 cites W3122709477 @default.
- W3214720199 cites W3129101247 @default.
- W3214720199 cites W3133277826 @default.
- W3214720199 cites W3137957816 @default.
- W3214720199 cites W3138286814 @default.
- W3214720199 cites W3155123963 @default.
- W3214720199 cites W3158868742 @default.
- W3214720199 cites W3159264550 @default.
- W3214720199 cites W3160564505 @default.
- W3214720199 cites W3161409296 @default.
- W3214720199 cites W3163015667 @default.
- W3214720199 cites W3172179193 @default.
- W3214720199 cites W3174021487 @default.
- W3214720199 cites W3193424151 @default.
- W3214720199 doi "https://doi.org/10.1101/2021.11.09.21266145" @default.
- W3214720199 hasPublicationYear "2021" @default.
- W3214720199 type Work @default.
- W3214720199 sameAs 3214720199 @default.
- W3214720199 citedByCount "0" @default.
- W3214720199 crossrefType "posted-content" @default.
- W3214720199 hasAuthorship W3214720199A5000732558 @default.
- W3214720199 hasAuthorship W3214720199A5006323989 @default.
- W3214720199 hasAuthorship W3214720199A5007108104 @default.
- W3214720199 hasAuthorship W3214720199A5009068592 @default.
- W3214720199 hasAuthorship W3214720199A5036810228 @default.
- W3214720199 hasAuthorship W3214720199A5037725946 @default.
- W3214720199 hasAuthorship W3214720199A5041850608 @default.
- W3214720199 hasAuthorship W3214720199A5048664886 @default.
- W3214720199 hasAuthorship W3214720199A5049128118 @default.
- W3214720199 hasAuthorship W3214720199A5052337424 @default.
- W3214720199 hasAuthorship W3214720199A5063317197 @default.
- W3214720199 hasAuthorship W3214720199A5064608531 @default.
- W3214720199 hasAuthorship W3214720199A5084829636 @default.
- W3214720199 hasBestOaLocation W32147201991 @default.
- W3214720199 hasConcept C105795698 @default.
- W3214720199 hasConcept C118552586 @default.
- W3214720199 hasConcept C126322002 @default.
- W3214720199 hasConcept C129848803 @default.
- W3214720199 hasConcept C142724271 @default.