Matches in SemOpenAlex for { <https://semopenalex.org/work/W3214727746> ?p ?o ?g. }
- W3214727746 endingPage "1" @default.
- W3214727746 startingPage "1" @default.
- W3214727746 abstract "To improve deep-learning performance in low-resource settings, many researchers have redesigned model architectures or applied additional data (e.g., external resources, unlabeled samples). However, there have been relatively few discussions on how to make good use of small amounts of labeled samples, although it is potentially beneficial and should be done before applying additional data or redesigning models. In this study, we assume a low-resource setting in which only a few labeled samples (i.e., 30–100 per class) are available, and we discuss how to exploit them without additional data or model redesigns. We explore possible approaches in the following three aspects: training validation splitting, early stopping, and weight initialization. Extensive experiments are conducted on six public sentence classification datasets. Performance on various evaluation metrics (e.g., accuracy, loss, and calibration error) significantly varied depending on the approaches that were combined in the three aspects. Based on the results, we propose an integrated method, which is to initialize the model with a weight averaging method and use a non-validation stop method to train all samples. This simple integrated method consistently outperforms the competitive methods; e.g., the average accuracy of six datasets of this method was 1.8% higher than those of conventional validation-based methods. In addition, the integrated method further improves the performance when adapted to several state-of-the-art models that use additional data or redesign the network architecture (e.g., self-training and enhanced structural models). Our results highlight the importance of the training strategy and suggest that the integrated method can be the first step in the low-resource setting. This study provides empirical knowledge that will be helpful when dealing with low-resource data in future efforts. Our code is publicly available at https://github.com/DMCB-GIST/exploit_all_samples." @default.
- W3214727746 created "2021-11-22" @default.
- W3214727746 creator A5023173605 @default.
- W3214727746 creator A5047739940 @default.
- W3214727746 date "2023-01-01" @default.
- W3214727746 modified "2023-10-03" @default.
- W3214727746 title "Exploiting all samples in low-resource sentence classification: early stopping and initialization parameters" @default.
- W3214727746 cites W1582774210 @default.
- W3214727746 cites W1832693441 @default.
- W3214727746 cites W1944128481 @default.
- W3214727746 cites W2014902591 @default.
- W3214727746 cites W2028175314 @default.
- W3214727746 cites W2095705004 @default.
- W3214727746 cites W2114524997 @default.
- W3214727746 cites W2121678312 @default.
- W3214727746 cites W2160660844 @default.
- W3214727746 cites W2163455955 @default.
- W3214727746 cites W2163568299 @default.
- W3214727746 cites W2251939518 @default.
- W3214727746 cites W2342840547 @default.
- W3214727746 cites W2557283755 @default.
- W3214727746 cites W2604763608 @default.
- W3214727746 cites W2605047975 @default.
- W3214727746 cites W2624871570 @default.
- W3214727746 cites W2800708042 @default.
- W3214727746 cites W2805132522 @default.
- W3214727746 cites W2888784389 @default.
- W3214727746 cites W2890511566 @default.
- W3214727746 cites W2911876557 @default.
- W3214727746 cites W2919115771 @default.
- W3214727746 cites W2922917409 @default.
- W3214727746 cites W2945125794 @default.
- W3214727746 cites W2963341956 @default.
- W3214727746 cites W2963371670 @default.
- W3214727746 cites W2963918774 @default.
- W3214727746 cites W2964121744 @default.
- W3214727746 cites W2964165804 @default.
- W3214727746 cites W2964212410 @default.
- W3214727746 cites W2969338701 @default.
- W3214727746 cites W2970457158 @default.
- W3214727746 cites W2971252690 @default.
- W3214727746 cites W2971296908 @default.
- W3214727746 cites W3019466234 @default.
- W3214727746 cites W3022569409 @default.
- W3214727746 doi "https://doi.org/10.1109/access.2023.3261884" @default.
- W3214727746 hasPublicationYear "2023" @default.
- W3214727746 type Work @default.
- W3214727746 sameAs 3214727746 @default.
- W3214727746 citedByCount "0" @default.
- W3214727746 crossrefType "journal-article" @default.
- W3214727746 hasAuthorship W3214727746A5023173605 @default.
- W3214727746 hasAuthorship W3214727746A5047739940 @default.
- W3214727746 hasBestOaLocation W32147277461 @default.
- W3214727746 hasConcept C105795698 @default.
- W3214727746 hasConcept C114466953 @default.
- W3214727746 hasConcept C119857082 @default.
- W3214727746 hasConcept C124101348 @default.
- W3214727746 hasConcept C154945302 @default.
- W3214727746 hasConcept C165696696 @default.
- W3214727746 hasConcept C165838908 @default.
- W3214727746 hasConcept C199360897 @default.
- W3214727746 hasConcept C206345919 @default.
- W3214727746 hasConcept C2777530160 @default.
- W3214727746 hasConcept C31258907 @default.
- W3214727746 hasConcept C33923547 @default.
- W3214727746 hasConcept C38652104 @default.
- W3214727746 hasConcept C41008148 @default.
- W3214727746 hasConcept C50644808 @default.
- W3214727746 hasConcept C5465570 @default.
- W3214727746 hasConceptScore W3214727746C105795698 @default.
- W3214727746 hasConceptScore W3214727746C114466953 @default.
- W3214727746 hasConceptScore W3214727746C119857082 @default.
- W3214727746 hasConceptScore W3214727746C124101348 @default.
- W3214727746 hasConceptScore W3214727746C154945302 @default.
- W3214727746 hasConceptScore W3214727746C165696696 @default.
- W3214727746 hasConceptScore W3214727746C165838908 @default.
- W3214727746 hasConceptScore W3214727746C199360897 @default.
- W3214727746 hasConceptScore W3214727746C206345919 @default.
- W3214727746 hasConceptScore W3214727746C2777530160 @default.
- W3214727746 hasConceptScore W3214727746C31258907 @default.
- W3214727746 hasConceptScore W3214727746C33923547 @default.
- W3214727746 hasConceptScore W3214727746C38652104 @default.
- W3214727746 hasConceptScore W3214727746C41008148 @default.
- W3214727746 hasConceptScore W3214727746C50644808 @default.
- W3214727746 hasConceptScore W3214727746C5465570 @default.
- W3214727746 hasFunder F4320322120 @default.
- W3214727746 hasLocation W32147277461 @default.
- W3214727746 hasOpenAccess W3214727746 @default.
- W3214727746 hasPrimaryLocation W32147277461 @default.
- W3214727746 hasRelatedWork W1527191935 @default.
- W3214727746 hasRelatedWork W2351355159 @default.
- W3214727746 hasRelatedWork W2358639633 @default.
- W3214727746 hasRelatedWork W2374442885 @default.
- W3214727746 hasRelatedWork W2374512474 @default.
- W3214727746 hasRelatedWork W2393933887 @default.
- W3214727746 hasRelatedWork W2961085424 @default.
- W3214727746 hasRelatedWork W2964604098 @default.
- W3214727746 hasRelatedWork W2997512100 @default.