Matches in SemOpenAlex for { <https://semopenalex.org/work/W3214810932> ?p ?o ?g. }
- W3214810932 endingPage "119865" @default.
- W3214810932 startingPage "119865" @default.
- W3214810932 abstract "Allometric models are commonly used to predict forest biomass. These models typically take nonlinear power-law forms that predict individual tree aboveground biomass (AGB) as functions of diameter at breast height (D) and/or tree height (H). Because the residual variance is in most cases heteroscedastic, accommodating the heteroscedasticity (i.e., heterogeneity of variance) becomes necessary when estimating model parameters. We tested several weighting procedures and a logarithmic transformation for nonlinear allometric biomass models. We further evaluated the effectiveness of these procedures with emphasis on how they affected estimates of mean AGB per hectare and their standard errors for large forest areas. Our results revealed that some weighting procedures were more effective for accommodating heteroscedasticity than others and that effectiveness was greater for single predictor models but less for models based on both D and H. Failing to effectively accommodate heteroscedasticity produced small to moderate differences in the estimates of mean AGB per hectare and their standard errors. However, these differences were greater between model forms (models based on D and H versus models based on D only), regardless of the weighting approach. Similar consequences were observed with respect to whether model prediction uncertainty was or was not included when estimating mean AGB per hectare and standard errors. When including model prediction uncertainty, the standard errors of the estimated means increased substantially, by 44–59%. Therefore, to avoid possible negative consequences on large-area biomass estimation, we recommend: (i) testing the effectiveness of a weighting procedure when accommodating heteroscedasticity in allometric biomass models, (ii) incorporating model prediction uncertainty in the total uncertainty estimate and (iii) including H as an additional predictor variable in allometric biomass models." @default.
- W3214810932 created "2021-12-06" @default.
- W3214810932 creator A5004946965 @default.
- W3214810932 creator A5018412035 @default.
- W3214810932 creator A5034250940 @default.
- W3214810932 creator A5059756590 @default.
- W3214810932 date "2022-02-01" @default.
- W3214810932 modified "2023-10-02" @default.
- W3214810932 title "Accommodating heteroscedasticity in allometric biomass models" @default.
- W3214810932 cites W1492314380 @default.
- W3214810932 cites W1513618424 @default.
- W3214810932 cites W1626119784 @default.
- W3214810932 cites W1834931997 @default.
- W3214810932 cites W1864007918 @default.
- W3214810932 cites W1916495551 @default.
- W3214810932 cites W1972681476 @default.
- W3214810932 cites W1979293562 @default.
- W3214810932 cites W2003269154 @default.
- W3214810932 cites W2015795623 @default.
- W3214810932 cites W2017828943 @default.
- W3214810932 cites W2021087224 @default.
- W3214810932 cites W2021474216 @default.
- W3214810932 cites W2022224360 @default.
- W3214810932 cites W2032167823 @default.
- W3214810932 cites W2036320532 @default.
- W3214810932 cites W2053898741 @default.
- W3214810932 cites W2058404065 @default.
- W3214810932 cites W2060806362 @default.
- W3214810932 cites W2070821812 @default.
- W3214810932 cites W2081029895 @default.
- W3214810932 cites W2098935748 @default.
- W3214810932 cites W2107620039 @default.
- W3214810932 cites W2108818539 @default.
- W3214810932 cites W2109631166 @default.
- W3214810932 cites W2113521108 @default.
- W3214810932 cites W2124638023 @default.
- W3214810932 cites W2129990354 @default.
- W3214810932 cites W2133613984 @default.
- W3214810932 cites W2138889935 @default.
- W3214810932 cites W2157286661 @default.
- W3214810932 cites W2158118208 @default.
- W3214810932 cites W2216748805 @default.
- W3214810932 cites W2288393565 @default.
- W3214810932 cites W2320934521 @default.
- W3214810932 cites W2329556022 @default.
- W3214810932 cites W2485202016 @default.
- W3214810932 cites W2587550673 @default.
- W3214810932 cites W2594782971 @default.
- W3214810932 cites W2608463550 @default.
- W3214810932 cites W2614366129 @default.
- W3214810932 cites W2735073798 @default.
- W3214810932 cites W2765343078 @default.
- W3214810932 cites W2800016808 @default.
- W3214810932 cites W2802532398 @default.
- W3214810932 cites W2806400648 @default.
- W3214810932 cites W2883511127 @default.
- W3214810932 cites W2931949634 @default.
- W3214810932 cites W2985312384 @default.
- W3214810932 cites W2998284264 @default.
- W3214810932 cites W3014799474 @default.
- W3214810932 cites W3047950704 @default.
- W3214810932 cites W3095166948 @default.
- W3214810932 doi "https://doi.org/10.1016/j.foreco.2021.119865" @default.
- W3214810932 hasPublicationYear "2022" @default.
- W3214810932 type Work @default.
- W3214810932 sameAs 3214810932 @default.
- W3214810932 citedByCount "5" @default.
- W3214810932 countsByYear W32148109322022 @default.
- W3214810932 countsByYear W32148109322023 @default.
- W3214810932 crossrefType "journal-article" @default.
- W3214810932 hasAuthorship W3214810932A5004946965 @default.
- W3214810932 hasAuthorship W3214810932A5018412035 @default.
- W3214810932 hasAuthorship W3214810932A5034250940 @default.
- W3214810932 hasAuthorship W3214810932A5059756590 @default.
- W3214810932 hasBestOaLocation W32148109322 @default.
- W3214810932 hasConcept C101104100 @default.
- W3214810932 hasConcept C104409967 @default.
- W3214810932 hasConcept C105795698 @default.
- W3214810932 hasConcept C115540264 @default.
- W3214810932 hasConcept C121955636 @default.
- W3214810932 hasConcept C126838900 @default.
- W3214810932 hasConcept C149782125 @default.
- W3214810932 hasConcept C153026981 @default.
- W3214810932 hasConcept C162324750 @default.
- W3214810932 hasConcept C183115368 @default.
- W3214810932 hasConcept C18747219 @default.
- W3214810932 hasConcept C18903297 @default.
- W3214810932 hasConcept C196083921 @default.
- W3214810932 hasConcept C33923547 @default.
- W3214810932 hasConcept C71924100 @default.
- W3214810932 hasConcept C86803240 @default.
- W3214810932 hasConceptScore W3214810932C101104100 @default.
- W3214810932 hasConceptScore W3214810932C104409967 @default.
- W3214810932 hasConceptScore W3214810932C105795698 @default.
- W3214810932 hasConceptScore W3214810932C115540264 @default.
- W3214810932 hasConceptScore W3214810932C121955636 @default.
- W3214810932 hasConceptScore W3214810932C126838900 @default.
- W3214810932 hasConceptScore W3214810932C149782125 @default.