Matches in SemOpenAlex for { <https://semopenalex.org/work/W3214886847> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W3214886847 abstract "Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the virus that causes Covid-19. Covid-19 can spread quickly and lead to death so that the World Health Organization (WHO) has declared this disease a pandemic. Currently there are two methods commonly used in Covid-19, The Rapid Diagnostic Test (RDT) which has lower accuracy but requires fast time, and Real-Time Reverse Transcription Polymerase Chain Reaction (RT-PCR) which takes a long time but the accuracy is better than RDT. An alternative method that requires a short time and has high accuracy is required. One of method offered is to use CT images to detect Covid-19. This research proposes to detect Covid-19 from CT images using transfer learning methods of AlexNet, Resnet50, VGG16, Inception-v3, Inception-Resnet, Xception, and DenseNet. In this study we compared transfer learning using CLAHE preprocessing and without CLAHE. The results of this study provide that transfer learning with CLAHE preprocessing has a better performance than without CLAHE. The best performance has an accuracy of 94.97%, F-measure of 94.87%, and a precision of 97.88% for VGG16. Meanwhile, based on recall, Inception-Resnet has the best score with 95.62%, compared to VGG16 without CLAHE the results are slightly below the performance with 94.36% accuracy, F-measure of 94.21%, and a precision of 97.85, and the best recall is Resnet50 with 91.63%." @default.
- W3214886847 created "2021-12-06" @default.
- W3214886847 creator A5046933678 @default.
- W3214886847 creator A5050390763 @default.
- W3214886847 date "2021-10-20" @default.
- W3214886847 modified "2023-09-27" @default.
- W3214886847 title "Detection of Covid-19 from Chest CT Images Using Deep Transfer Learning" @default.
- W3214886847 cites W2097117768 @default.
- W3214886847 cites W2183341477 @default.
- W3214886847 cites W2194775991 @default.
- W3214886847 cites W2531409750 @default.
- W3214886847 cites W2618530766 @default.
- W3214886847 cites W2963446712 @default.
- W3214886847 cites W2978135519 @default.
- W3214886847 cites W3010659930 @default.
- W3214886847 cites W3013601031 @default.
- W3214886847 cites W3021248201 @default.
- W3214886847 cites W3023180050 @default.
- W3214886847 cites W3026059552 @default.
- W3214886847 cites W3036249543 @default.
- W3214886847 cites W3037886259 @default.
- W3214886847 cites W3086547236 @default.
- W3214886847 cites W3089168916 @default.
- W3214886847 doi "https://doi.org/10.1109/icts52701.2021.9608160" @default.
- W3214886847 hasPublicationYear "2021" @default.
- W3214886847 type Work @default.
- W3214886847 sameAs 3214886847 @default.
- W3214886847 citedByCount "0" @default.
- W3214886847 crossrefType "proceedings-article" @default.
- W3214886847 hasAuthorship W3214886847A5046933678 @default.
- W3214886847 hasAuthorship W3214886847A5050390763 @default.
- W3214886847 hasConcept C108583219 @default.
- W3214886847 hasConcept C116675565 @default.
- W3214886847 hasConcept C142724271 @default.
- W3214886847 hasConcept C150899416 @default.
- W3214886847 hasConcept C153180895 @default.
- W3214886847 hasConcept C154945302 @default.
- W3214886847 hasConcept C2779134260 @default.
- W3214886847 hasConcept C3006700255 @default.
- W3214886847 hasConcept C3007834351 @default.
- W3214886847 hasConcept C3008058167 @default.
- W3214886847 hasConcept C34736171 @default.
- W3214886847 hasConcept C41008148 @default.
- W3214886847 hasConcept C524204448 @default.
- W3214886847 hasConcept C71924100 @default.
- W3214886847 hasConceptScore W3214886847C108583219 @default.
- W3214886847 hasConceptScore W3214886847C116675565 @default.
- W3214886847 hasConceptScore W3214886847C142724271 @default.
- W3214886847 hasConceptScore W3214886847C150899416 @default.
- W3214886847 hasConceptScore W3214886847C153180895 @default.
- W3214886847 hasConceptScore W3214886847C154945302 @default.
- W3214886847 hasConceptScore W3214886847C2779134260 @default.
- W3214886847 hasConceptScore W3214886847C3006700255 @default.
- W3214886847 hasConceptScore W3214886847C3007834351 @default.
- W3214886847 hasConceptScore W3214886847C3008058167 @default.
- W3214886847 hasConceptScore W3214886847C34736171 @default.
- W3214886847 hasConceptScore W3214886847C41008148 @default.
- W3214886847 hasConceptScore W3214886847C524204448 @default.
- W3214886847 hasConceptScore W3214886847C71924100 @default.
- W3214886847 hasLocation W32148868471 @default.
- W3214886847 hasOpenAccess W3214886847 @default.
- W3214886847 hasPrimaryLocation W32148868471 @default.
- W3214886847 hasRelatedWork W3009669391 @default.
- W3214886847 hasRelatedWork W3036314732 @default.
- W3214886847 hasRelatedWork W3195938642 @default.
- W3214886847 hasRelatedWork W3198183218 @default.
- W3214886847 hasRelatedWork W4200329650 @default.
- W3214886847 hasRelatedWork W4205317059 @default.
- W3214886847 hasRelatedWork W4206669628 @default.
- W3214886847 hasRelatedWork W4283396849 @default.
- W3214886847 hasRelatedWork W4382894326 @default.
- W3214886847 hasRelatedWork W3127156785 @default.
- W3214886847 isParatext "false" @default.
- W3214886847 isRetracted "false" @default.
- W3214886847 magId "3214886847" @default.
- W3214886847 workType "article" @default.