Matches in SemOpenAlex for { <https://semopenalex.org/work/W3214896434> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W3214896434 endingPage "73" @default.
- W3214896434 startingPage "65" @default.
- W3214896434 abstract "While machine learning has occupied a niche in clinical medicine for decades, continued method development and increased accessibility of medical data have led to broad diversification of approaches. These range from humble regression-based models to more complex artificial neural networks; yet, despite heterogeneity in foundational principles and architecture, the spectrum of machine learning approaches to clinical prediction modeling have invariably led to the development of algorithms advancing our ability to provide optimal care for our patients. In this chapter, we briefly review early machine learning approaches in medicine before delving into common approaches being applied for clinical prediction modeling today. For each, we offer a brief introduction into theory and application with accompanying examples from the medical literature. In doing so, we present a summarized image of the current state of machine learning and some of its many forms in medical predictive modeling." @default.
- W3214896434 created "2021-12-06" @default.
- W3214896434 creator A5002091540 @default.
- W3214896434 creator A5021433932 @default.
- W3214896434 creator A5039496825 @default.
- W3214896434 creator A5083985190 @default.
- W3214896434 date "2021-12-04" @default.
- W3214896434 modified "2023-10-05" @default.
- W3214896434 title "A Discussion of Machine Learning Approaches for Clinical Prediction Modeling" @default.
- W3214896434 cites W1494192115 @default.
- W3214896434 cites W1960188818 @default.
- W3214896434 cites W1963928778 @default.
- W3214896434 cites W1982088425 @default.
- W3214896434 cites W1985605499 @default.
- W3214896434 cites W1993789572 @default.
- W3214896434 cites W2010760898 @default.
- W3214896434 cites W2029957791 @default.
- W3214896434 cites W2030017878 @default.
- W3214896434 cites W2037668591 @default.
- W3214896434 cites W2060148090 @default.
- W3214896434 cites W2068141066 @default.
- W3214896434 cites W2070374624 @default.
- W3214896434 cites W2105804328 @default.
- W3214896434 cites W2109816625 @default.
- W3214896434 cites W2113242816 @default.
- W3214896434 cites W2113870592 @default.
- W3214896434 cites W2115629999 @default.
- W3214896434 cites W2115709314 @default.
- W3214896434 cites W2118286367 @default.
- W3214896434 cites W2120240539 @default.
- W3214896434 cites W2122825543 @default.
- W3214896434 cites W2126137834 @default.
- W3214896434 cites W2135556835 @default.
- W3214896434 cites W2148601182 @default.
- W3214896434 cites W2149199519 @default.
- W3214896434 cites W2157076315 @default.
- W3214896434 cites W2158648291 @default.
- W3214896434 cites W2161289668 @default.
- W3214896434 cites W2162630772 @default.
- W3214896434 cites W2332285323 @default.
- W3214896434 cites W2740924709 @default.
- W3214896434 cites W2763556273 @default.
- W3214896434 cites W2769014061 @default.
- W3214896434 cites W2787894218 @default.
- W3214896434 cites W2911964244 @default.
- W3214896434 cites W2965313157 @default.
- W3214896434 cites W3032019872 @default.
- W3214896434 cites W4234698323 @default.
- W3214896434 cites W4250042253 @default.
- W3214896434 doi "https://doi.org/10.1007/978-3-030-85292-4_9" @default.
- W3214896434 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34862529" @default.
- W3214896434 hasPublicationYear "2021" @default.
- W3214896434 type Work @default.
- W3214896434 sameAs 3214896434 @default.
- W3214896434 citedByCount "2" @default.
- W3214896434 countsByYear W32148964342023 @default.
- W3214896434 crossrefType "book-chapter" @default.
- W3214896434 hasAuthorship W3214896434A5002091540 @default.
- W3214896434 hasAuthorship W3214896434A5021433932 @default.
- W3214896434 hasAuthorship W3214896434A5039496825 @default.
- W3214896434 hasAuthorship W3214896434A5083985190 @default.
- W3214896434 hasConcept C108583219 @default.
- W3214896434 hasConcept C119857082 @default.
- W3214896434 hasConcept C154945302 @default.
- W3214896434 hasConcept C2522767166 @default.
- W3214896434 hasConcept C41008148 @default.
- W3214896434 hasConcept C50644808 @default.
- W3214896434 hasConcept C71924100 @default.
- W3214896434 hasConceptScore W3214896434C108583219 @default.
- W3214896434 hasConceptScore W3214896434C119857082 @default.
- W3214896434 hasConceptScore W3214896434C154945302 @default.
- W3214896434 hasConceptScore W3214896434C2522767166 @default.
- W3214896434 hasConceptScore W3214896434C41008148 @default.
- W3214896434 hasConceptScore W3214896434C50644808 @default.
- W3214896434 hasConceptScore W3214896434C71924100 @default.
- W3214896434 hasLocation W32148964341 @default.
- W3214896434 hasLocation W32148964342 @default.
- W3214896434 hasOpenAccess W3214896434 @default.
- W3214896434 hasPrimaryLocation W32148964341 @default.
- W3214896434 hasRelatedWork W2795261237 @default.
- W3214896434 hasRelatedWork W3014300295 @default.
- W3214896434 hasRelatedWork W3164822677 @default.
- W3214896434 hasRelatedWork W4223943233 @default.
- W3214896434 hasRelatedWork W4225161397 @default.
- W3214896434 hasRelatedWork W4312200629 @default.
- W3214896434 hasRelatedWork W4360585206 @default.
- W3214896434 hasRelatedWork W4364306694 @default.
- W3214896434 hasRelatedWork W4380075502 @default.
- W3214896434 hasRelatedWork W4380086463 @default.
- W3214896434 isParatext "false" @default.
- W3214896434 isRetracted "false" @default.
- W3214896434 magId "3214896434" @default.
- W3214896434 workType "book-chapter" @default.