Matches in SemOpenAlex for { <https://semopenalex.org/work/W3214952392> ?p ?o ?g. }
- W3214952392 endingPage "2981" @default.
- W3214952392 startingPage "2981" @default.
- W3214952392 abstract "Stochastic computing is an emerging scientific field pushed by the need for developing high-performance artificial intelligence systems in hardware to quickly solve complex data processing problems. This is the case of virtual screening, a computational task aimed at searching across huge molecular databases for new drug leads. In this work, we show a classification framework in which molecules are described by an energy-based vector. This vector is then processed by an ultra-fast artificial neural network implemented through FPGA by using stochastic computing techniques. Compared to other previously published virtual screening methods, this proposal provides similar or higher accuracy, while it improves processing speed by about two or three orders of magnitude." @default.
- W3214952392 created "2021-12-06" @default.
- W3214952392 creator A5005597587 @default.
- W3214952392 creator A5007091764 @default.
- W3214952392 creator A5010381548 @default.
- W3214952392 creator A5033534252 @default.
- W3214952392 creator A5044977420 @default.
- W3214952392 creator A5064247732 @default.
- W3214952392 creator A5085233948 @default.
- W3214952392 creator A5088992811 @default.
- W3214952392 date "2021-11-30" @default.
- W3214952392 modified "2023-10-14" @default.
- W3214952392 title "Using Stochastic Computing for Virtual Screening Acceleration" @default.
- W3214952392 cites W1598658109 @default.
- W3214952392 cites W1968319881 @default.
- W3214952392 cites W1990613796 @default.
- W3214952392 cites W1997324634 @default.
- W3214952392 cites W2003056114 @default.
- W3214952392 cites W2008517160 @default.
- W3214952392 cites W2025295061 @default.
- W3214952392 cites W2033882981 @default.
- W3214952392 cites W2047247039 @default.
- W3214952392 cites W2053717624 @default.
- W3214952392 cites W2057350662 @default.
- W3214952392 cites W2107240838 @default.
- W3214952392 cites W2112411768 @default.
- W3214952392 cites W2138270396 @default.
- W3214952392 cites W2139421133 @default.
- W3214952392 cites W2142223409 @default.
- W3214952392 cites W2147421370 @default.
- W3214952392 cites W2271352405 @default.
- W3214952392 cites W2331903788 @default.
- W3214952392 cites W2338548910 @default.
- W3214952392 cites W2474047672 @default.
- W3214952392 cites W2520698283 @default.
- W3214952392 cites W2564219748 @default.
- W3214952392 cites W2587289508 @default.
- W3214952392 cites W2594036141 @default.
- W3214952392 cites W2595565350 @default.
- W3214952392 cites W2755098789 @default.
- W3214952392 cites W2806542061 @default.
- W3214952392 cites W2874662585 @default.
- W3214952392 cites W2884441791 @default.
- W3214952392 cites W2897802248 @default.
- W3214952392 cites W2901719664 @default.
- W3214952392 cites W2903956504 @default.
- W3214952392 cites W2918817571 @default.
- W3214952392 cites W2919512338 @default.
- W3214952392 cites W2920995682 @default.
- W3214952392 cites W2926696222 @default.
- W3214952392 cites W2948831670 @default.
- W3214952392 cites W2955267291 @default.
- W3214952392 cites W2960677646 @default.
- W3214952392 cites W2964293370 @default.
- W3214952392 cites W2971801381 @default.
- W3214952392 cites W2981618201 @default.
- W3214952392 cites W3003315945 @default.
- W3214952392 cites W3012320348 @default.
- W3214952392 cites W3020257619 @default.
- W3214952392 cites W3028332918 @default.
- W3214952392 cites W3035777330 @default.
- W3214952392 cites W3037245120 @default.
- W3214952392 cites W3038315492 @default.
- W3214952392 cites W3043660595 @default.
- W3214952392 cites W3105841399 @default.
- W3214952392 cites W3164081635 @default.
- W3214952392 cites W4235298314 @default.
- W3214952392 cites W4251476106 @default.
- W3214952392 doi "https://doi.org/10.3390/electronics10232981" @default.
- W3214952392 hasPublicationYear "2021" @default.
- W3214952392 type Work @default.
- W3214952392 sameAs 3214952392 @default.
- W3214952392 citedByCount "1" @default.
- W3214952392 countsByYear W32149523922022 @default.
- W3214952392 crossrefType "journal-article" @default.
- W3214952392 hasAuthorship W3214952392A5005597587 @default.
- W3214952392 hasAuthorship W3214952392A5007091764 @default.
- W3214952392 hasAuthorship W3214952392A5010381548 @default.
- W3214952392 hasAuthorship W3214952392A5033534252 @default.
- W3214952392 hasAuthorship W3214952392A5044977420 @default.
- W3214952392 hasAuthorship W3214952392A5064247732 @default.
- W3214952392 hasAuthorship W3214952392A5085233948 @default.
- W3214952392 hasAuthorship W3214952392A5088992811 @default.
- W3214952392 hasBestOaLocation W32149523921 @default.
- W3214952392 hasConcept C103697762 @default.
- W3214952392 hasConcept C113775141 @default.
- W3214952392 hasConcept C117896860 @default.
- W3214952392 hasConcept C119857082 @default.
- W3214952392 hasConcept C120314980 @default.
- W3214952392 hasConcept C121332964 @default.
- W3214952392 hasConcept C13164978 @default.
- W3214952392 hasConcept C149635348 @default.
- W3214952392 hasConcept C154945302 @default.
- W3214952392 hasConcept C162324750 @default.
- W3214952392 hasConcept C187736073 @default.
- W3214952392 hasConcept C202444582 @default.
- W3214952392 hasConcept C2780451532 @default.
- W3214952392 hasConcept C33923547 @default.