Matches in SemOpenAlex for { <https://semopenalex.org/work/W3214974721> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W3214974721 endingPage "100216" @default.
- W3214974721 startingPage "100216" @default.
- W3214974721 abstract "Due to repeated heavy loads, environmental conditions and non-frequent monitoring, the rail is subjected to heavy damage resulting in sudden failure. Hence, a frequent, faster, and efficient monitoring strategy is required. This paper attempts to investigate the application of guided wave (GW) generated through surface-bonded piezo-electric wafer transducer (PWT) to detect damages in rail at high frequencies. Firstly, a combined experimental and simulation study is presented in an effort to understand the dispersion characteristics of guided wave and its interaction with head damages in a relatively small rail specimen. The numerical simulation results are validated with those obtained from the experiments showing a good agreement between them. Secondly, a framework based on the machine learning algorithm is proposed to efficiently detect damage in rail head. Numerous inseparable guided wave modes are observed at higher frequencies implying the inability to detect damage through specific mode. Therefore, a machine learning framework is trained using time, frequency, and time–frequency domain features of the signal. Total 672 numerical simulations of different types of damage with different severity and location in the rail head are carried out to train and validate the model. It is found that GW generated through surface bonded PWTs is able to detect minimum defect size of 5% of head area with 1 mm thickness. Finally, the proposed framework is tested using simulation and experiment results of arbitrary damage in the rail head. The error in estimating severity was found to be in the range from 2.00% to 16.67%." @default.
- W3214974721 created "2021-12-06" @default.
- W3214974721 creator A5021095639 @default.
- W3214974721 creator A5021537319 @default.
- W3214974721 date "2022-03-01" @default.
- W3214974721 modified "2023-10-14" @default.
- W3214974721 title "A machine learning framework for guided wave-based damage detection of rail head using surface-bonded piezo-electric wafer transducers" @default.
- W3214974721 cites W1976865917 @default.
- W3214974721 cites W1982482848 @default.
- W3214974721 cites W1991271890 @default.
- W3214974721 cites W2015688155 @default.
- W3214974721 cites W2016492986 @default.
- W3214974721 cites W2054764478 @default.
- W3214974721 cites W2109432443 @default.
- W3214974721 cites W2128151448 @default.
- W3214974721 cites W2159974744 @default.
- W3214974721 cites W2731508853 @default.
- W3214974721 cites W2789464321 @default.
- W3214974721 cites W2945697543 @default.
- W3214974721 cites W2950674600 @default.
- W3214974721 cites W2968734794 @default.
- W3214974721 cites W2990660750 @default.
- W3214974721 cites W3013265712 @default.
- W3214974721 cites W3016887452 @default.
- W3214974721 doi "https://doi.org/10.1016/j.mlwa.2021.100216" @default.
- W3214974721 hasPublicationYear "2022" @default.
- W3214974721 type Work @default.
- W3214974721 sameAs 3214974721 @default.
- W3214974721 citedByCount "6" @default.
- W3214974721 countsByYear W32149747212022 @default.
- W3214974721 countsByYear W32149747212023 @default.
- W3214974721 crossrefType "journal-article" @default.
- W3214974721 hasAuthorship W3214974721A5021095639 @default.
- W3214974721 hasAuthorship W3214974721A5021537319 @default.
- W3214974721 hasBestOaLocation W32149747211 @default.
- W3214974721 hasConcept C114793014 @default.
- W3214974721 hasConcept C119599485 @default.
- W3214974721 hasConcept C121332964 @default.
- W3214974721 hasConcept C127313418 @default.
- W3214974721 hasConcept C127413603 @default.
- W3214974721 hasConcept C159985019 @default.
- W3214974721 hasConcept C160671074 @default.
- W3214974721 hasConcept C192562407 @default.
- W3214974721 hasConcept C199360897 @default.
- W3214974721 hasConcept C204323151 @default.
- W3214974721 hasConcept C24890656 @default.
- W3214974721 hasConcept C2779843651 @default.
- W3214974721 hasConcept C2780312720 @default.
- W3214974721 hasConcept C41008148 @default.
- W3214974721 hasConcept C56318395 @default.
- W3214974721 hasConcept C66938386 @default.
- W3214974721 hasConcept C74046356 @default.
- W3214974721 hasConceptScore W3214974721C114793014 @default.
- W3214974721 hasConceptScore W3214974721C119599485 @default.
- W3214974721 hasConceptScore W3214974721C121332964 @default.
- W3214974721 hasConceptScore W3214974721C127313418 @default.
- W3214974721 hasConceptScore W3214974721C127413603 @default.
- W3214974721 hasConceptScore W3214974721C159985019 @default.
- W3214974721 hasConceptScore W3214974721C160671074 @default.
- W3214974721 hasConceptScore W3214974721C192562407 @default.
- W3214974721 hasConceptScore W3214974721C199360897 @default.
- W3214974721 hasConceptScore W3214974721C204323151 @default.
- W3214974721 hasConceptScore W3214974721C24890656 @default.
- W3214974721 hasConceptScore W3214974721C2779843651 @default.
- W3214974721 hasConceptScore W3214974721C2780312720 @default.
- W3214974721 hasConceptScore W3214974721C41008148 @default.
- W3214974721 hasConceptScore W3214974721C56318395 @default.
- W3214974721 hasConceptScore W3214974721C66938386 @default.
- W3214974721 hasConceptScore W3214974721C74046356 @default.
- W3214974721 hasLocation W32149747211 @default.
- W3214974721 hasLocation W32149747212 @default.
- W3214974721 hasOpenAccess W3214974721 @default.
- W3214974721 hasPrimaryLocation W32149747211 @default.
- W3214974721 hasRelatedWork W2030264254 @default.
- W3214974721 hasRelatedWork W2069747382 @default.
- W3214974721 hasRelatedWork W2123480368 @default.
- W3214974721 hasRelatedWork W2536260966 @default.
- W3214974721 hasRelatedWork W2555809932 @default.
- W3214974721 hasRelatedWork W2899084033 @default.
- W3214974721 hasRelatedWork W3023783831 @default.
- W3214974721 hasRelatedWork W3114533858 @default.
- W3214974721 hasRelatedWork W4226066667 @default.
- W3214974721 hasRelatedWork W4236189427 @default.
- W3214974721 hasVolume "7" @default.
- W3214974721 isParatext "false" @default.
- W3214974721 isRetracted "false" @default.
- W3214974721 magId "3214974721" @default.
- W3214974721 workType "article" @default.