Matches in SemOpenAlex for { <https://semopenalex.org/work/W3214981967> ?p ?o ?g. }
- W3214981967 endingPage "86" @default.
- W3214981967 startingPage "74" @default.
- W3214981967 abstract "Dry eye disease (DED) has a prevalence of between 5 and 50%, depending on the diagnostic criteria used and population under study. However, it remains one of the most underdiagnosed and undertreated conditions in ophthalmology. Many tests used in the diagnosis of DED rely on an experienced observer for image interpretation, which may be considered subjective and result in variation in diagnosis. Since artificial intelligence (AI) systems are capable of advanced problem solving, use of such techniques could lead to more objective diagnosis. Although the term 'AI' is commonly used, recent success in its applications to medicine is mainly due to advancements in the sub-field of machine learning, which has been used to automatically classify images and predict medical outcomes. Powerful machine learning techniques have been harnessed to understand nuances in patient data and medical images, aiming for consistent diagnosis and stratification of disease severity. This is the first literature review on the use of AI in DED. We provide a brief introduction to AI, report its current use in DED research and its potential for application in the clinic. Our review found that AI has been employed in a wide range of DED clinical tests and research applications, primarily for interpretation of interferometry, slit-lamp and meibography images. While initial results are promising, much work is still needed on model development, clinical testing and standardisation." @default.
- W3214981967 created "2021-12-06" @default.
- W3214981967 creator A5000311801 @default.
- W3214981967 creator A5001144517 @default.
- W3214981967 creator A5024618495 @default.
- W3214981967 creator A5024861911 @default.
- W3214981967 creator A5032770006 @default.
- W3214981967 creator A5041662804 @default.
- W3214981967 creator A5065962854 @default.
- W3214981967 creator A5071792105 @default.
- W3214981967 creator A5080530948 @default.
- W3214981967 creator A5088962741 @default.
- W3214981967 date "2022-01-01" @default.
- W3214981967 modified "2023-10-02" @default.
- W3214981967 title "Artificial intelligence in dry eye disease" @default.
- W3214981967 cites W1969098352 @default.
- W3214981967 cites W1975835241 @default.
- W3214981967 cites W1987419174 @default.
- W3214981967 cites W1993900282 @default.
- W3214981967 cites W2009433228 @default.
- W3214981967 cites W2021338992 @default.
- W3214981967 cites W2032781976 @default.
- W3214981967 cites W2036383675 @default.
- W3214981967 cites W2045557044 @default.
- W3214981967 cites W2059851011 @default.
- W3214981967 cites W2082810351 @default.
- W3214981967 cites W2101493843 @default.
- W3214981967 cites W2102701614 @default.
- W3214981967 cites W2156165690 @default.
- W3214981967 cites W2319541480 @default.
- W3214981967 cites W2328921800 @default.
- W3214981967 cites W2343345682 @default.
- W3214981967 cites W2345167694 @default.
- W3214981967 cites W2398978180 @default.
- W3214981967 cites W2416084544 @default.
- W3214981967 cites W2438374857 @default.
- W3214981967 cites W2516441760 @default.
- W3214981967 cites W2538606111 @default.
- W3214981967 cites W2557738935 @default.
- W3214981967 cites W2581082771 @default.
- W3214981967 cites W2618530766 @default.
- W3214981967 cites W2737642784 @default.
- W3214981967 cites W2739359388 @default.
- W3214981967 cites W2763459152 @default.
- W3214981967 cites W2769455967 @default.
- W3214981967 cites W2785645041 @default.
- W3214981967 cites W2804615920 @default.
- W3214981967 cites W2886281300 @default.
- W3214981967 cites W2886801379 @default.
- W3214981967 cites W2888109941 @default.
- W3214981967 cites W2892741787 @default.
- W3214981967 cites W2899170201 @default.
- W3214981967 cites W2909575788 @default.
- W3214981967 cites W2911961397 @default.
- W3214981967 cites W2912072952 @default.
- W3214981967 cites W2943464049 @default.
- W3214981967 cites W2965363672 @default.
- W3214981967 cites W2966534123 @default.
- W3214981967 cites W2972980944 @default.
- W3214981967 cites W2978294504 @default.
- W3214981967 cites W2982580298 @default.
- W3214981967 cites W2995117282 @default.
- W3214981967 cites W2995644550 @default.
- W3214981967 cites W2998358834 @default.
- W3214981967 cites W3003320216 @default.
- W3214981967 cites W3004754018 @default.
- W3214981967 cites W3005672199 @default.
- W3214981967 cites W3007455487 @default.
- W3214981967 cites W3031971987 @default.
- W3214981967 cites W3034029340 @default.
- W3214981967 cites W3044364643 @default.
- W3214981967 cites W3084147525 @default.
- W3214981967 cites W3085519673 @default.
- W3214981967 cites W3088774154 @default.
- W3214981967 cites W3104343507 @default.
- W3214981967 cites W3117149079 @default.
- W3214981967 cites W3126829239 @default.
- W3214981967 cites W3128104361 @default.
- W3214981967 cites W3132620934 @default.
- W3214981967 cites W3158363476 @default.
- W3214981967 cites W3167994769 @default.
- W3214981967 cites W3210260729 @default.
- W3214981967 doi "https://doi.org/10.1016/j.jtos.2021.11.004" @default.
- W3214981967 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34843999" @default.
- W3214981967 hasPublicationYear "2022" @default.
- W3214981967 type Work @default.
- W3214981967 sameAs 3214981967 @default.
- W3214981967 citedByCount "16" @default.
- W3214981967 countsByYear W32149819672022 @default.
- W3214981967 countsByYear W32149819672023 @default.
- W3214981967 crossrefType "journal-article" @default.
- W3214981967 hasAuthorship W3214981967A5000311801 @default.
- W3214981967 hasAuthorship W3214981967A5001144517 @default.
- W3214981967 hasAuthorship W3214981967A5024618495 @default.
- W3214981967 hasAuthorship W3214981967A5024861911 @default.
- W3214981967 hasAuthorship W3214981967A5032770006 @default.
- W3214981967 hasAuthorship W3214981967A5041662804 @default.
- W3214981967 hasAuthorship W3214981967A5065962854 @default.