Matches in SemOpenAlex for { <https://semopenalex.org/work/W3214988706> ?p ?o ?g. }
- W3214988706 endingPage "105939" @default.
- W3214988706 startingPage "105939" @default.
- W3214988706 abstract "Satellite-based rainfall products with high spatial and temporal resolutions can provide an excellent data source for regions where rain-gauge networks are missing or unevenly and sparsely distributed. The objective of this study was to examine the suitability of six high-resolution satellite-based rainfall products, Climate Hazards Group InfraRed Precipitation with Stations Version 8 (CHIRPSv8), African Rainfall Estimation Algorithm Version 2 (RFEv2), Tropical Rainfall Measuring Mission Multi-Satellite Precipitation Analysis version 7 (TMPA3B42v7), Integrated Multi-SatelliteE Retrievals for Global Precipitation Measurement version 6 (IMERGv6), Multi-Source Weighted Ensemble Precipitation version 2.8 (MSWEPv2.8) and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN), for the complex topography and climate of the Nile headwater catchments. The reliability of these products was assessed using rainfall estimates as an input to force a parsimonious and high-resolution hydrological model. A spatially distributed and parsimonious hydrological model was developed in Wflow-PCRaster/Python modelling framework to simulate streamflow using rain-gauge and satellite-based rainfall inputs. The model was calibrated and validated at three locations for each rainfall product and ground rainfall measurement. The accuracy of satellite-based rainfall products as input to the hydrological model for daily streamflow forecasting was dependent upon the product type. CHIRPSv8, IMERGv6 and RFEv2 demonstrated a reliable capability to simulate the streamflow at different spatial scales. In contrast, the TMPA3B42v7 and PERSIANN products failed to capture the ground streamflow measurements. All products performed inconsistently when simulating large floods and low flows. While TMPA3B42v7 and MSWEPv2.8 underestimated the streamflow with a large magnitude of variation in peak flow, the remaining products underestimated it throughout the study period. CHIRPSv8 and IMERGv6 product outperformed all other products consistently across all periods and locations followed by RFEv2. PERSIANN failed to capture the observed streamflow with lower performance indices. A better agreement of simulated streamflow with ground streamflow measurements was attained from CHIRPSv8 and IMERGv6 compared to the gauge-driven rainfall inputs. Performance of streamflow simulations improved when catchment area was increased from 481 to 46,000 km2. Overall, this study demonstrated the potential of CHIRPSv8 and IMERGv6 rainfall products as an alternate source of rainfall data for hydrological applications in the Nile basin catchments and the potential for its use in other regions which lack direct rainfall measurement capacity." @default.
- W3214988706 created "2021-12-06" @default.
- W3214988706 creator A5020255453 @default.
- W3214988706 creator A5020360053 @default.
- W3214988706 creator A5040311034 @default.
- W3214988706 creator A5066381803 @default.
- W3214988706 creator A5075578535 @default.
- W3214988706 creator A5078956195 @default.
- W3214988706 creator A5091136564 @default.
- W3214988706 date "2022-03-01" @default.
- W3214988706 modified "2023-10-13" @default.
- W3214988706 title "Satellite-based rainfall estimates evaluation using a parsimonious hydrological model in the complex climate and topography of the Nile River Catchments" @default.
- W3214988706 cites W1618463439 @default.
- W3214988706 cites W1963726388 @default.
- W3214988706 cites W1970428686 @default.
- W3214988706 cites W1989161558 @default.
- W3214988706 cites W1994180896 @default.
- W3214988706 cites W1995182125 @default.
- W3214988706 cites W1996601154 @default.
- W3214988706 cites W1998436381 @default.
- W3214988706 cites W2010441009 @default.
- W3214988706 cites W2013537840 @default.
- W3214988706 cites W2040208504 @default.
- W3214988706 cites W2041678850 @default.
- W3214988706 cites W2044414467 @default.
- W3214988706 cites W2052469867 @default.
- W3214988706 cites W2058998445 @default.
- W3214988706 cites W2064763222 @default.
- W3214988706 cites W2068763667 @default.
- W3214988706 cites W2074338125 @default.
- W3214988706 cites W2077785322 @default.
- W3214988706 cites W2092307664 @default.
- W3214988706 cites W2113711674 @default.
- W3214988706 cites W2136012135 @default.
- W3214988706 cites W2136367299 @default.
- W3214988706 cites W2140878949 @default.
- W3214988706 cites W2142287386 @default.
- W3214988706 cites W2144051257 @default.
- W3214988706 cites W2165683996 @default.
- W3214988706 cites W2170280355 @default.
- W3214988706 cites W2172877736 @default.
- W3214988706 cites W2285890467 @default.
- W3214988706 cites W2301208913 @default.
- W3214988706 cites W2419317440 @default.
- W3214988706 cites W2465950597 @default.
- W3214988706 cites W2470898428 @default.
- W3214988706 cites W2474695286 @default.
- W3214988706 cites W2512582341 @default.
- W3214988706 cites W2582994346 @default.
- W3214988706 cites W2583988243 @default.
- W3214988706 cites W2588003345 @default.
- W3214988706 cites W2597668382 @default.
- W3214988706 cites W2601796364 @default.
- W3214988706 cites W2726176538 @default.
- W3214988706 cites W2765795306 @default.
- W3214988706 cites W2767834217 @default.
- W3214988706 cites W2771932040 @default.
- W3214988706 cites W2790802507 @default.
- W3214988706 cites W2793714880 @default.
- W3214988706 cites W2803700003 @default.
- W3214988706 cites W2803992624 @default.
- W3214988706 cites W2804279190 @default.
- W3214988706 cites W2804541749 @default.
- W3214988706 cites W2808989141 @default.
- W3214988706 cites W2811176599 @default.
- W3214988706 cites W2888729788 @default.
- W3214988706 cites W2890873664 @default.
- W3214988706 cites W2891552681 @default.
- W3214988706 cites W2899363336 @default.
- W3214988706 cites W2906003851 @default.
- W3214988706 cites W2908033304 @default.
- W3214988706 cites W2909757669 @default.
- W3214988706 cites W2909955359 @default.
- W3214988706 cites W2938614319 @default.
- W3214988706 cites W2969425215 @default.
- W3214988706 cites W2974247245 @default.
- W3214988706 cites W2986289670 @default.
- W3214988706 cites W3005813145 @default.
- W3214988706 cites W3006204454 @default.
- W3214988706 cites W3007793824 @default.
- W3214988706 cites W3080542297 @default.
- W3214988706 cites W3089275715 @default.
- W3214988706 cites W3091173380 @default.
- W3214988706 cites W3097427076 @default.
- W3214988706 cites W3098628703 @default.
- W3214988706 cites W3130051190 @default.
- W3214988706 cites W3133507936 @default.
- W3214988706 cites W3153593374 @default.
- W3214988706 cites W3157093819 @default.
- W3214988706 cites W917426581 @default.
- W3214988706 doi "https://doi.org/10.1016/j.atmosres.2021.105939" @default.
- W3214988706 hasPublicationYear "2022" @default.
- W3214988706 type Work @default.
- W3214988706 sameAs 3214988706 @default.
- W3214988706 citedByCount "9" @default.
- W3214988706 countsByYear W32149887062022 @default.
- W3214988706 countsByYear W32149887062023 @default.
- W3214988706 crossrefType "journal-article" @default.