Matches in SemOpenAlex for { <https://semopenalex.org/work/W3214989978> ?p ?o ?g. }
- W3214989978 endingPage "2232" @default.
- W3214989978 startingPage "2220" @default.
- W3214989978 abstract "The reliable operation of a power distribution system relies on a good prior knowledge of its topology and its system state. Although crucial, due to the lack of direct monitoring devices on the switch statuses, the topology information is often unavailable or outdated for the distribution system operators for real-time applications. Apart from the limited observability of the power distribution system, other challenges are the nonlinearity of the model, the complicated, unbalanced structure of the distribution system, and the scale of the system. To overcome the above challenges, this paper proposes a Bayesian-inference framework that allows us to simultaneously estimate the topology and the state of a three-phase, unbalanced power distribution system. Specifically, by using the very limited number of measurements available that are associated with the forecast load data, we efficiently recover the full Bayesian posterior distributions of the system topology under both normal and outage operation conditions. This is performed through an adaptive importance sampling procedure that greatly alleviates the computational burden of the traditional Monte-Carlo (MC)-sampling-based approach while maintaining a good estimation accuracy. The simulations conducted on the IEEE 123-bus test system and an unbalanced 1282-bus system reveal the excellent performances of the proposed method." @default.
- W3214989978 created "2021-12-06" @default.
- W3214989978 creator A5023379357 @default.
- W3214989978 creator A5034654778 @default.
- W3214989978 creator A5041488867 @default.
- W3214989978 creator A5047501422 @default.
- W3214989978 creator A5064225965 @default.
- W3214989978 creator A5073678278 @default.
- W3214989978 creator A5085963164 @default.
- W3214989978 date "2022-05-01" @default.
- W3214989978 modified "2023-10-16" @default.
- W3214989978 title "An Adaptive-Importance-Sampling-Enhanced Bayesian Approach for Topology Estimation in an Unbalanced Power Distribution System" @default.
- W3214989978 cites W1499925099 @default.
- W3214989978 cites W1512208174 @default.
- W3214989978 cites W1535327586 @default.
- W3214989978 cites W1665662210 @default.
- W3214989978 cites W1979969656 @default.
- W3214989978 cites W2026463651 @default.
- W3214989978 cites W2029584840 @default.
- W3214989978 cites W2043895979 @default.
- W3214989978 cites W2053470766 @default.
- W3214989978 cites W2054366636 @default.
- W3214989978 cites W2055096789 @default.
- W3214989978 cites W2057059632 @default.
- W3214989978 cites W2063092822 @default.
- W3214989978 cites W2107596707 @default.
- W3214989978 cites W2116100905 @default.
- W3214989978 cites W2117750133 @default.
- W3214989978 cites W2125443283 @default.
- W3214989978 cites W2128180949 @default.
- W3214989978 cites W2132172997 @default.
- W3214989978 cites W2133871647 @default.
- W3214989978 cites W2139068957 @default.
- W3214989978 cites W2145057652 @default.
- W3214989978 cites W2147549640 @default.
- W3214989978 cites W2162765501 @default.
- W3214989978 cites W2166787100 @default.
- W3214989978 cites W2272328839 @default.
- W3214989978 cites W2326935886 @default.
- W3214989978 cites W2461090066 @default.
- W3214989978 cites W2503603971 @default.
- W3214989978 cites W2560189212 @default.
- W3214989978 cites W2583497101 @default.
- W3214989978 cites W2734994405 @default.
- W3214989978 cites W2735102987 @default.
- W3214989978 cites W2806458225 @default.
- W3214989978 cites W2808048481 @default.
- W3214989978 cites W2810783378 @default.
- W3214989978 cites W2889691632 @default.
- W3214989978 cites W2896556311 @default.
- W3214989978 cites W2903638091 @default.
- W3214989978 cites W2910116366 @default.
- W3214989978 cites W2954896683 @default.
- W3214989978 cites W2962946572 @default.
- W3214989978 cites W2963703527 @default.
- W3214989978 cites W2964019680 @default.
- W3214989978 cites W2964171381 @default.
- W3214989978 cites W2967200523 @default.
- W3214989978 cites W2967611898 @default.
- W3214989978 cites W2972404681 @default.
- W3214989978 cites W2974427491 @default.
- W3214989978 cites W2982546563 @default.
- W3214989978 cites W3003449657 @default.
- W3214989978 cites W3009960257 @default.
- W3214989978 cites W3011140654 @default.
- W3214989978 cites W3133745520 @default.
- W3214989978 cites W3163267810 @default.
- W3214989978 cites W3181790949 @default.
- W3214989978 cites W3183184203 @default.
- W3214989978 doi "https://doi.org/10.1109/tpwrs.2021.3121612" @default.
- W3214989978 hasPublicationYear "2022" @default.
- W3214989978 type Work @default.
- W3214989978 sameAs 3214989978 @default.
- W3214989978 citedByCount "7" @default.
- W3214989978 countsByYear W32149899782022 @default.
- W3214989978 countsByYear W32149899782023 @default.
- W3214989978 crossrefType "journal-article" @default.
- W3214989978 hasAuthorship W3214989978A5023379357 @default.
- W3214989978 hasAuthorship W3214989978A5034654778 @default.
- W3214989978 hasAuthorship W3214989978A5041488867 @default.
- W3214989978 hasAuthorship W3214989978A5047501422 @default.
- W3214989978 hasAuthorship W3214989978A5064225965 @default.
- W3214989978 hasAuthorship W3214989978A5073678278 @default.
- W3214989978 hasAuthorship W3214989978A5085963164 @default.
- W3214989978 hasBestOaLocation W32149899783 @default.
- W3214989978 hasConcept C105795698 @default.
- W3214989978 hasConcept C106131492 @default.
- W3214989978 hasConcept C119599485 @default.
- W3214989978 hasConcept C121332964 @default.
- W3214989978 hasConcept C127413603 @default.
- W3214989978 hasConcept C140779682 @default.
- W3214989978 hasConcept C163258240 @default.
- W3214989978 hasConcept C184720557 @default.
- W3214989978 hasConcept C19499675 @default.
- W3214989978 hasConcept C28826006 @default.
- W3214989978 hasConcept C31972630 @default.
- W3214989978 hasConcept C33923547 @default.
- W3214989978 hasConcept C36299963 @default.