Matches in SemOpenAlex for { <https://semopenalex.org/work/W3215043003> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W3215043003 endingPage "108216" @default.
- W3215043003 startingPage "108216" @default.
- W3215043003 abstract "The accidents in Urban Pipeline Network (UPN) may cause enormous economic loss and serious threats to society and environment. The daily operation and maintenance of UPN is usually associated with many aspects of data. How to take full advantage of these multi-source data in combination with advanced data mining techniques to assess the post-event risk of pipeline accidents is of great significance to management of resilient urban systems. This work first summarizes the factors affecting accident consequence of gas UPN and establishes the risk evaluation indicators. A traditional risk assessment model based on the Kent index method and the analytic hierarchy process is then employed to determine the relative risk value of each pipeline. To reduce the dependency on experts’ subjective judgements or calculation of probability events in a Bayes decision procedure, a data-driven model based on graph embedding and clustering algorithm is proposed. The Graph Convolutional Network (GCN) technique is used to extract the topological features of pipeline network as a complement to the common attribute features considering the top pipelines usually bear comparable level of risks. A case study on a real gas pipeline network consisting of more than 6500 pipelines verifies the effectiveness of the proposed model." @default.
- W3215043003 created "2021-12-06" @default.
- W3215043003 creator A5030409288 @default.
- W3215043003 creator A5049692788 @default.
- W3215043003 creator A5091385022 @default.
- W3215043003 date "2022-03-01" @default.
- W3215043003 modified "2023-10-06" @default.
- W3215043003 title "Data-driven accident consequence assessment on urban gas pipeline network based on machine learning" @default.
- W3215043003 cites W1041725758 @default.
- W3215043003 cites W143174683 @default.
- W3215043003 cites W2002516701 @default.
- W3215043003 cites W2016989343 @default.
- W3215043003 cites W2025331472 @default.
- W3215043003 cites W2060071340 @default.
- W3215043003 cites W2121236318 @default.
- W3215043003 cites W2132914434 @default.
- W3215043003 cites W2529702177 @default.
- W3215043003 cites W2605378293 @default.
- W3215043003 cites W290556040 @default.
- W3215043003 cites W2962983474 @default.
- W3215043003 cites W2998389585 @default.
- W3215043003 cites W3008862683 @default.
- W3215043003 cites W3036162042 @default.
- W3215043003 cites W3111390905 @default.
- W3215043003 doi "https://doi.org/10.1016/j.ress.2021.108216" @default.
- W3215043003 hasPublicationYear "2022" @default.
- W3215043003 type Work @default.
- W3215043003 sameAs 3215043003 @default.
- W3215043003 citedByCount "27" @default.
- W3215043003 countsByYear W32150430032022 @default.
- W3215043003 countsByYear W32150430032023 @default.
- W3215043003 crossrefType "journal-article" @default.
- W3215043003 hasAuthorship W3215043003A5030409288 @default.
- W3215043003 hasAuthorship W3215043003A5049692788 @default.
- W3215043003 hasAuthorship W3215043003A5091385022 @default.
- W3215043003 hasConcept C119857082 @default.
- W3215043003 hasConcept C12174686 @default.
- W3215043003 hasConcept C124101348 @default.
- W3215043003 hasConcept C127413603 @default.
- W3215043003 hasConcept C132525143 @default.
- W3215043003 hasConcept C175309249 @default.
- W3215043003 hasConcept C199360897 @default.
- W3215043003 hasConcept C33724603 @default.
- W3215043003 hasConcept C38652104 @default.
- W3215043003 hasConcept C41008148 @default.
- W3215043003 hasConcept C42475967 @default.
- W3215043003 hasConcept C43521106 @default.
- W3215043003 hasConcept C80444323 @default.
- W3215043003 hasConcept C87345402 @default.
- W3215043003 hasConcept C87717796 @default.
- W3215043003 hasConceptScore W3215043003C119857082 @default.
- W3215043003 hasConceptScore W3215043003C12174686 @default.
- W3215043003 hasConceptScore W3215043003C124101348 @default.
- W3215043003 hasConceptScore W3215043003C127413603 @default.
- W3215043003 hasConceptScore W3215043003C132525143 @default.
- W3215043003 hasConceptScore W3215043003C175309249 @default.
- W3215043003 hasConceptScore W3215043003C199360897 @default.
- W3215043003 hasConceptScore W3215043003C33724603 @default.
- W3215043003 hasConceptScore W3215043003C38652104 @default.
- W3215043003 hasConceptScore W3215043003C41008148 @default.
- W3215043003 hasConceptScore W3215043003C42475967 @default.
- W3215043003 hasConceptScore W3215043003C43521106 @default.
- W3215043003 hasConceptScore W3215043003C80444323 @default.
- W3215043003 hasConceptScore W3215043003C87345402 @default.
- W3215043003 hasConceptScore W3215043003C87717796 @default.
- W3215043003 hasFunder F4320321001 @default.
- W3215043003 hasFunder F4320327031 @default.
- W3215043003 hasLocation W32150430031 @default.
- W3215043003 hasOpenAccess W3215043003 @default.
- W3215043003 hasPrimaryLocation W32150430031 @default.
- W3215043003 hasRelatedWork W2120762159 @default.
- W3215043003 hasRelatedWork W2215245817 @default.
- W3215043003 hasRelatedWork W2343312926 @default.
- W3215043003 hasRelatedWork W2351610623 @default.
- W3215043003 hasRelatedWork W2367598641 @default.
- W3215043003 hasRelatedWork W2372113489 @default.
- W3215043003 hasRelatedWork W2380592150 @default.
- W3215043003 hasRelatedWork W2386728981 @default.
- W3215043003 hasRelatedWork W2394041503 @default.
- W3215043003 hasRelatedWork W2893725641 @default.
- W3215043003 hasVolume "219" @default.
- W3215043003 isParatext "false" @default.
- W3215043003 isRetracted "false" @default.
- W3215043003 magId "3215043003" @default.
- W3215043003 workType "article" @default.