Matches in SemOpenAlex for { <https://semopenalex.org/work/W3215051290> ?p ?o ?g. }
- W3215051290 endingPage "4683" @default.
- W3215051290 startingPage "4683" @default.
- W3215051290 abstract "Vegetation Types (VTs) are important managerial units, and their identification serves as essential tools for the conservation of land covers. Despite a long history of Earth observation applications to assess and monitor land covers, the quantitative detection of sparse VTs remains problematic, especially in arid and semiarid areas. This research aimed to identify appropriate multi-temporal datasets to improve the accuracy of VTs classification in a heterogeneous landscape in Central Zagros, Iran. To do so, first the Normalized Difference Vegetation Index (NDVI) temporal profile of each VT was identified in the study area for the period of 2018, 2019, and 2020. This data revealed strong seasonal phenological patterns and key periods of VTs separation. It led us to select the optimal time series images to be used in the VTs classification. We then compared single-date and multi-temporal datasets of Landsat 8 images within the Google Earth Engine (GEE) platform as the input to the Random Forest classifier for VTs detection. The single-date classification gave a median Overall Kappa (OK) and Overall Accuracy (OA) of 51% and 64%, respectively. Instead, using multi-temporal images led to an overall kappa accuracy of 74% and an overall accuracy of 81%. Thus, the exploitation of multi-temporal datasets favored accurate VTs classification. In addition, the presented results underline that available open access cloud-computing platforms such as the GEE facilitates identifying optimal periods and multitemporal imagery for VTs classification." @default.
- W3215051290 created "2021-12-06" @default.
- W3215051290 creator A5007085012 @default.
- W3215051290 creator A5011094117 @default.
- W3215051290 creator A5068798831 @default.
- W3215051290 creator A5079448372 @default.
- W3215051290 creator A5087556764 @default.
- W3215051290 date "2021-11-19" @default.
- W3215051290 modified "2023-10-03" @default.
- W3215051290 title "Vegetation Types Mapping Using Multi-Temporal Landsat Images in the Google Earth Engine Platform" @default.
- W3215051290 cites W2000102737 @default.
- W3215051290 cites W2089527605 @default.
- W3215051290 cites W2467985152 @default.
- W3215051290 cites W2541453841 @default.
- W3215051290 cites W2592712793 @default.
- W3215051290 cites W2605750624 @default.
- W3215051290 cites W2725897987 @default.
- W3215051290 cites W2793327769 @default.
- W3215051290 cites W2793683620 @default.
- W3215051290 cites W2801007817 @default.
- W3215051290 cites W2803189521 @default.
- W3215051290 cites W2805691427 @default.
- W3215051290 cites W2808628447 @default.
- W3215051290 cites W2885406917 @default.
- W3215051290 cites W2903689264 @default.
- W3215051290 cites W2906082293 @default.
- W3215051290 cites W2909496043 @default.
- W3215051290 cites W2910829991 @default.
- W3215051290 cites W2913586827 @default.
- W3215051290 cites W2917698804 @default.
- W3215051290 cites W2921952664 @default.
- W3215051290 cites W2922390763 @default.
- W3215051290 cites W2954349187 @default.
- W3215051290 cites W2972170785 @default.
- W3215051290 cites W2982652103 @default.
- W3215051290 cites W2987982347 @default.
- W3215051290 cites W2993182755 @default.
- W3215051290 cites W3005790354 @default.
- W3215051290 cites W3006962608 @default.
- W3215051290 cites W3011749806 @default.
- W3215051290 cites W3014372673 @default.
- W3215051290 cites W3045585619 @default.
- W3215051290 cites W3045755298 @default.
- W3215051290 cites W3089681013 @default.
- W3215051290 cites W3098198702 @default.
- W3215051290 cites W3121821685 @default.
- W3215051290 cites W3197702083 @default.
- W3215051290 doi "https://doi.org/10.3390/rs13224683" @default.
- W3215051290 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36082003" @default.
- W3215051290 hasPublicationYear "2021" @default.
- W3215051290 type Work @default.
- W3215051290 sameAs 3215051290 @default.
- W3215051290 citedByCount "5" @default.
- W3215051290 countsByYear W32150512902022 @default.
- W3215051290 countsByYear W32150512902023 @default.
- W3215051290 crossrefType "journal-article" @default.
- W3215051290 hasAuthorship W3215051290A5007085012 @default.
- W3215051290 hasAuthorship W3215051290A5011094117 @default.
- W3215051290 hasAuthorship W3215051290A5068798831 @default.
- W3215051290 hasAuthorship W3215051290A5079448372 @default.
- W3215051290 hasAuthorship W3215051290A5087556764 @default.
- W3215051290 hasBestOaLocation W32150512901 @default.
- W3215051290 hasConcept C111368507 @default.
- W3215051290 hasConcept C119857082 @default.
- W3215051290 hasConcept C124101348 @default.
- W3215051290 hasConcept C127313418 @default.
- W3215051290 hasConcept C127413603 @default.
- W3215051290 hasConcept C132651083 @default.
- W3215051290 hasConcept C142724271 @default.
- W3215051290 hasConcept C146978453 @default.
- W3215051290 hasConcept C1549246 @default.
- W3215051290 hasConcept C154945302 @default.
- W3215051290 hasConcept C163864269 @default.
- W3215051290 hasConcept C169258074 @default.
- W3215051290 hasConcept C19269812 @default.
- W3215051290 hasConcept C205649164 @default.
- W3215051290 hasConcept C2776133958 @default.
- W3215051290 hasConcept C39399123 @default.
- W3215051290 hasConcept C39432304 @default.
- W3215051290 hasConcept C41008148 @default.
- W3215051290 hasConcept C62649853 @default.
- W3215051290 hasConcept C71924100 @default.
- W3215051290 hasConcept C77277458 @default.
- W3215051290 hasConcept C95623464 @default.
- W3215051290 hasConceptScore W3215051290C111368507 @default.
- W3215051290 hasConceptScore W3215051290C119857082 @default.
- W3215051290 hasConceptScore W3215051290C124101348 @default.
- W3215051290 hasConceptScore W3215051290C127313418 @default.
- W3215051290 hasConceptScore W3215051290C127413603 @default.
- W3215051290 hasConceptScore W3215051290C132651083 @default.
- W3215051290 hasConceptScore W3215051290C142724271 @default.
- W3215051290 hasConceptScore W3215051290C146978453 @default.
- W3215051290 hasConceptScore W3215051290C1549246 @default.
- W3215051290 hasConceptScore W3215051290C154945302 @default.
- W3215051290 hasConceptScore W3215051290C163864269 @default.
- W3215051290 hasConceptScore W3215051290C169258074 @default.
- W3215051290 hasConceptScore W3215051290C19269812 @default.
- W3215051290 hasConceptScore W3215051290C205649164 @default.