Matches in SemOpenAlex for { <https://semopenalex.org/work/W3215065510> ?p ?o ?g. }
- W3215065510 endingPage "12725" @default.
- W3215065510 startingPage "12725" @default.
- W3215065510 abstract "Traffic accidents have significant financial and social impacts. Reducing the losses caused by traffic accidents has always been one of the most important issues. This paper presents an effort to investigate the factors affecting the accident severity of drivers with different driving experience. Special focus was placed on the combined effect of driving experience and age. Based on our dataset (traffic accidents that occurred between 2005 and 2021 in Shaanxi, China), CatBoost model was applied to deal with categorical feature, and SHAP (Shapley Additive exPlanations) model was used to interpret the output. Results show that accident cause, age, visibility, light condition, season, road alignment, and terrain are the key factors affecting accident severity for both novice and experienced drivers. Age has the opposite impact on fatal accident for novice and experienced drivers. Novice drivers younger than 30 or older than 55 are prone to suffer fatal accident, but for experienced drivers, the risk of fatal accident decreases when they are young and increases when they are old. These findings fill the research gap of the combined effect of driving experience and age on accident severity. Meanwhile, it can provide useful insights for practitioners to improve traffic safety for novice and experienced drivers." @default.
- W3215065510 created "2021-12-06" @default.
- W3215065510 creator A5022683711 @default.
- W3215065510 creator A5066064211 @default.
- W3215065510 creator A5085541725 @default.
- W3215065510 date "2021-12-02" @default.
- W3215065510 modified "2023-10-14" @default.
- W3215065510 title "Insights into Factors Affecting Traffic Accident Severity of Novice and Experienced Drivers: A Machine Learning Approach" @default.
- W3215065510 cites W1591261915 @default.
- W3215065510 cites W1970475687 @default.
- W3215065510 cites W1972547998 @default.
- W3215065510 cites W1993220166 @default.
- W3215065510 cites W1999591995 @default.
- W3215065510 cites W2007019606 @default.
- W3215065510 cites W2007291283 @default.
- W3215065510 cites W2022714541 @default.
- W3215065510 cites W2027155228 @default.
- W3215065510 cites W2033575805 @default.
- W3215065510 cites W2062786991 @default.
- W3215065510 cites W2069842088 @default.
- W3215065510 cites W2076261376 @default.
- W3215065510 cites W2079421655 @default.
- W3215065510 cites W2083764015 @default.
- W3215065510 cites W2099026792 @default.
- W3215065510 cites W2107686700 @default.
- W3215065510 cites W2120907918 @default.
- W3215065510 cites W2125696286 @default.
- W3215065510 cites W2129064244 @default.
- W3215065510 cites W2148143831 @default.
- W3215065510 cites W2179278141 @default.
- W3215065510 cites W2224576170 @default.
- W3215065510 cites W2292045100 @default.
- W3215065510 cites W2489225182 @default.
- W3215065510 cites W2503516736 @default.
- W3215065510 cites W2742822544 @default.
- W3215065510 cites W2752199591 @default.
- W3215065510 cites W2778357345 @default.
- W3215065510 cites W2844550192 @default.
- W3215065510 cites W2889046169 @default.
- W3215065510 cites W2899037650 @default.
- W3215065510 cites W2913985905 @default.
- W3215065510 cites W2932525495 @default.
- W3215065510 cites W2946080173 @default.
- W3215065510 cites W2947063549 @default.
- W3215065510 cites W2963543439 @default.
- W3215065510 cites W2980882355 @default.
- W3215065510 cites W2992034134 @default.
- W3215065510 cites W2998299723 @default.
- W3215065510 cites W2999144441 @default.
- W3215065510 cites W2999615587 @default.
- W3215065510 cites W3006177603 @default.
- W3215065510 cites W3006555384 @default.
- W3215065510 cites W3007953678 @default.
- W3215065510 cites W3017233012 @default.
- W3215065510 cites W3037500800 @default.
- W3215065510 cites W3044740104 @default.
- W3215065510 cites W3080683975 @default.
- W3215065510 cites W3107871314 @default.
- W3215065510 cites W3124080842 @default.
- W3215065510 cites W3139037632 @default.
- W3215065510 cites W3148855201 @default.
- W3215065510 cites W3173631909 @default.
- W3215065510 cites W3192462495 @default.
- W3215065510 cites W336661456 @default.
- W3215065510 doi "https://doi.org/10.3390/ijerph182312725" @default.
- W3215065510 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34886451" @default.
- W3215065510 hasPublicationYear "2021" @default.
- W3215065510 type Work @default.
- W3215065510 sameAs 3215065510 @default.
- W3215065510 citedByCount "0" @default.
- W3215065510 crossrefType "journal-article" @default.
- W3215065510 hasAuthorship W3215065510A5022683711 @default.
- W3215065510 hasAuthorship W3215065510A5066064211 @default.
- W3215065510 hasAuthorship W3215065510A5085541725 @default.
- W3215065510 hasBestOaLocation W32150655101 @default.
- W3215065510 hasConcept C111472728 @default.
- W3215065510 hasConcept C119857082 @default.
- W3215065510 hasConcept C127413603 @default.
- W3215065510 hasConcept C138885662 @default.
- W3215065510 hasConcept C142724271 @default.
- W3215065510 hasConcept C15744967 @default.
- W3215065510 hasConcept C166735990 @default.
- W3215065510 hasConcept C166957645 @default.
- W3215065510 hasConcept C187155963 @default.
- W3215065510 hasConcept C190385971 @default.
- W3215065510 hasConcept C191935318 @default.
- W3215065510 hasConcept C205649164 @default.
- W3215065510 hasConcept C22212356 @default.
- W3215065510 hasConcept C2780289543 @default.
- W3215065510 hasConcept C3017944768 @default.
- W3215065510 hasConcept C41008148 @default.
- W3215065510 hasConcept C526869908 @default.
- W3215065510 hasConcept C5274069 @default.
- W3215065510 hasConcept C71924100 @default.
- W3215065510 hasConcept C75630572 @default.
- W3215065510 hasConcept C91509002 @default.
- W3215065510 hasConcept C99454951 @default.
- W3215065510 hasConceptScore W3215065510C111472728 @default.