Matches in SemOpenAlex for { <https://semopenalex.org/work/W3215072443> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W3215072443 endingPage "012002" @default.
- W3215072443 startingPage "012002" @default.
- W3215072443 abstract "Abstract Detecting lung tumors in early stage by reading chest X-ray images is important for radical treatments of the disease. In order to decrease the risk of missed lung tumors, diagnosis support systems that can provide the accurate detection of lung tumors are in high demand, and the use of artificial intelligence with deep learning is one of the promising solutions. In our research, we aim to improve the accuracy of a deep learning-based system for detecting lung tumors by developing a bone suppression algorithm as a preprocessing for the machine-learning model. Our bone suppression algorithm was devised for conventional single-shot chest X-ray images, which do not rely on a specific type of imaging systems. 604 chest X-ray images were processed using the proposed algorithm and evaluated by combining it with a U-net deep learning model. The results showed that the bone suppression algorithm successfully improved the performance of the deep learning model to identify the location of lung tumors (Intersection over Union) from 0.085 (without the bone suppression algorithm) to 0.142, as well as the ability to classify the lung cancer (Area under Curve) that increased from 0.700 to 0.736. The bone suppression algorithm would be useful to improve the accuracy and the reliability of the deep learning-based diagnosis support systems for detecting lung cancer in mass medical examinations." @default.
- W3215072443 created "2021-12-06" @default.
- W3215072443 creator A5056323268 @default.
- W3215072443 creator A5056589245 @default.
- W3215072443 creator A5062657300 @default.
- W3215072443 creator A5087357302 @default.
- W3215072443 date "2021-10-01" @default.
- W3215072443 modified "2023-09-25" @default.
- W3215072443 title "Computer-aided Detection of Lung Tumors in Chest X-ray Images Using a Bone Suppression Algorithm and A Deep Learning Framework" @default.
- W3215072443 cites W2161076708 @default.
- W3215072443 cites W2322096275 @default.
- W3215072443 doi "https://doi.org/10.1088/1742-6596/2071/1/012002" @default.
- W3215072443 hasPublicationYear "2021" @default.
- W3215072443 type Work @default.
- W3215072443 sameAs 3215072443 @default.
- W3215072443 citedByCount "1" @default.
- W3215072443 countsByYear W32150724432023 @default.
- W3215072443 crossrefType "journal-article" @default.
- W3215072443 hasAuthorship W3215072443A5056323268 @default.
- W3215072443 hasAuthorship W3215072443A5056589245 @default.
- W3215072443 hasAuthorship W3215072443A5062657300 @default.
- W3215072443 hasAuthorship W3215072443A5087357302 @default.
- W3215072443 hasBestOaLocation W32150724431 @default.
- W3215072443 hasConcept C108583219 @default.
- W3215072443 hasConcept C11413529 @default.
- W3215072443 hasConcept C119857082 @default.
- W3215072443 hasConcept C126322002 @default.
- W3215072443 hasConcept C126838900 @default.
- W3215072443 hasConcept C142724271 @default.
- W3215072443 hasConcept C154945302 @default.
- W3215072443 hasConcept C2776256026 @default.
- W3215072443 hasConcept C2777714996 @default.
- W3215072443 hasConcept C34736171 @default.
- W3215072443 hasConcept C41008148 @default.
- W3215072443 hasConcept C71924100 @default.
- W3215072443 hasConceptScore W3215072443C108583219 @default.
- W3215072443 hasConceptScore W3215072443C11413529 @default.
- W3215072443 hasConceptScore W3215072443C119857082 @default.
- W3215072443 hasConceptScore W3215072443C126322002 @default.
- W3215072443 hasConceptScore W3215072443C126838900 @default.
- W3215072443 hasConceptScore W3215072443C142724271 @default.
- W3215072443 hasConceptScore W3215072443C154945302 @default.
- W3215072443 hasConceptScore W3215072443C2776256026 @default.
- W3215072443 hasConceptScore W3215072443C2777714996 @default.
- W3215072443 hasConceptScore W3215072443C34736171 @default.
- W3215072443 hasConceptScore W3215072443C41008148 @default.
- W3215072443 hasConceptScore W3215072443C71924100 @default.
- W3215072443 hasIssue "1" @default.
- W3215072443 hasLocation W32150724431 @default.
- W3215072443 hasOpenAccess W3215072443 @default.
- W3215072443 hasPrimaryLocation W32150724431 @default.
- W3215072443 hasRelatedWork W3014300295 @default.
- W3215072443 hasRelatedWork W3164822677 @default.
- W3215072443 hasRelatedWork W4223943233 @default.
- W3215072443 hasRelatedWork W4225161397 @default.
- W3215072443 hasRelatedWork W4309045103 @default.
- W3215072443 hasRelatedWork W4312200629 @default.
- W3215072443 hasRelatedWork W4313289316 @default.
- W3215072443 hasRelatedWork W4360585206 @default.
- W3215072443 hasRelatedWork W4364306694 @default.
- W3215072443 hasRelatedWork W4380086463 @default.
- W3215072443 hasVolume "2071" @default.
- W3215072443 isParatext "false" @default.
- W3215072443 isRetracted "false" @default.
- W3215072443 magId "3215072443" @default.
- W3215072443 workType "article" @default.