Matches in SemOpenAlex for { <https://semopenalex.org/work/W3215089722> ?p ?o ?g. }
- W3215089722 endingPage "729" @default.
- W3215089722 startingPage "712" @default.
- W3215089722 abstract "Occupant behaviour simulation frameworks can employ synthetic populations to characterize occupancy and behavioural patterns in buildings based on observed demographic data at a certain geographical location. For buildings, very few synthetic occupant populations have been generated. This paper uses a Bayesian Networks (BN) structural learning approach to synthesize populations of occupants in a multi-family housing case study. Two additional cases of office occupants and senior housing residents are considered as a cross-case comparison. We draw upon the extended version of drivers-needs-actions-systems (DNAS) framework to guide the selection of variables and data imputation. Our results show that the BN approach is powerful in learning the structure of data sets. The synthetic data sets successfully match the joint distributions of the underlying combined data sets. Experiments on the multi-family housing particularly show better performance than the office and senior housing cases." @default.
- W3215089722 created "2021-12-06" @default.
- W3215089722 creator A5081909567 @default.
- W3215089722 creator A5087692261 @default.
- W3215089722 creator A5088990923 @default.
- W3215089722 date "2021-11-02" @default.
- W3215089722 modified "2023-09-26" @default.
- W3215089722 title "Generating synthetic occupants for use in building performance simulation" @default.
- W3215089722 cites W1187830701 @default.
- W3215089722 cites W147085185 @default.
- W3215089722 cites W1572730394 @default.
- W3215089722 cites W1964652181 @default.
- W3215089722 cites W1981806743 @default.
- W3215089722 cites W1990389445 @default.
- W3215089722 cites W1997166069 @default.
- W3215089722 cites W1999151427 @default.
- W3215089722 cites W2050310643 @default.
- W3215089722 cites W2054658115 @default.
- W3215089722 cites W2061499892 @default.
- W3215089722 cites W2075787881 @default.
- W3215089722 cites W2077860232 @default.
- W3215089722 cites W2087326659 @default.
- W3215089722 cites W2092915639 @default.
- W3215089722 cites W2093961844 @default.
- W3215089722 cites W2114951958 @default.
- W3215089722 cites W2121097743 @default.
- W3215089722 cites W2128088446 @default.
- W3215089722 cites W2130690138 @default.
- W3215089722 cites W2140982038 @default.
- W3215089722 cites W2142635246 @default.
- W3215089722 cites W2143495742 @default.
- W3215089722 cites W2144731007 @default.
- W3215089722 cites W2150704630 @default.
- W3215089722 cites W2151233483 @default.
- W3215089722 cites W2161205483 @default.
- W3215089722 cites W2163166770 @default.
- W3215089722 cites W2165190832 @default.
- W3215089722 cites W2168175751 @default.
- W3215089722 cites W2176490941 @default.
- W3215089722 cites W2299889174 @default.
- W3215089722 cites W2345208044 @default.
- W3215089722 cites W2402038119 @default.
- W3215089722 cites W2408024676 @default.
- W3215089722 cites W2475616931 @default.
- W3215089722 cites W2480680997 @default.
- W3215089722 cites W2528491511 @default.
- W3215089722 cites W2560313989 @default.
- W3215089722 cites W2690712562 @default.
- W3215089722 cites W2788727642 @default.
- W3215089722 cites W2789321152 @default.
- W3215089722 cites W2808127757 @default.
- W3215089722 cites W2809095263 @default.
- W3215089722 cites W2898334667 @default.
- W3215089722 cites W2912831070 @default.
- W3215089722 cites W2945550309 @default.
- W3215089722 cites W2973078056 @default.
- W3215089722 cites W2986197314 @default.
- W3215089722 cites W2997167326 @default.
- W3215089722 cites W3008919590 @default.
- W3215089722 cites W3025446358 @default.
- W3215089722 cites W3099289621 @default.
- W3215089722 cites W3133231321 @default.
- W3215089722 cites W3150255470 @default.
- W3215089722 cites W3156835546 @default.
- W3215089722 cites W636346841 @default.
- W3215089722 doi "https://doi.org/10.1080/19401493.2021.2000029" @default.
- W3215089722 hasPublicationYear "2021" @default.
- W3215089722 type Work @default.
- W3215089722 sameAs 3215089722 @default.
- W3215089722 citedByCount "3" @default.
- W3215089722 countsByYear W32150897222022 @default.
- W3215089722 countsByYear W32150897222023 @default.
- W3215089722 crossrefType "journal-article" @default.
- W3215089722 hasAuthorship W3215089722A5081909567 @default.
- W3215089722 hasAuthorship W3215089722A5087692261 @default.
- W3215089722 hasAuthorship W3215089722A5088990923 @default.
- W3215089722 hasBestOaLocation W32150897222 @default.
- W3215089722 hasConcept C119857082 @default.
- W3215089722 hasConcept C124101348 @default.
- W3215089722 hasConcept C127413603 @default.
- W3215089722 hasConcept C154945302 @default.
- W3215089722 hasConcept C160331591 @default.
- W3215089722 hasConcept C160920958 @default.
- W3215089722 hasConcept C170154142 @default.
- W3215089722 hasConcept C41008148 @default.
- W3215089722 hasConcept C58041806 @default.
- W3215089722 hasConcept C9357733 @default.
- W3215089722 hasConceptScore W3215089722C119857082 @default.
- W3215089722 hasConceptScore W3215089722C124101348 @default.
- W3215089722 hasConceptScore W3215089722C127413603 @default.
- W3215089722 hasConceptScore W3215089722C154945302 @default.
- W3215089722 hasConceptScore W3215089722C160331591 @default.
- W3215089722 hasConceptScore W3215089722C160920958 @default.
- W3215089722 hasConceptScore W3215089722C170154142 @default.
- W3215089722 hasConceptScore W3215089722C41008148 @default.
- W3215089722 hasConceptScore W3215089722C58041806 @default.
- W3215089722 hasConceptScore W3215089722C9357733 @default.
- W3215089722 hasFunder F4320332360 @default.