Matches in SemOpenAlex for { <https://semopenalex.org/work/W3215092497> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W3215092497 endingPage "10877" @default.
- W3215092497 startingPage "10877" @default.
- W3215092497 abstract "Data telemetry is a critical element of successful unconventional well drilling operations, involving the transmission of information about the well-surrounding geology to the surface in real-time to serve as the basis for geosteering and well planning. However, the data extraction and code recovery (demodulation) process can be a complicated system due to the non-linear and time-varying characteristics of high amplitude surface noise. In this work, a novel model fuzzy wavelet neural network (FWNN) that combines the advantages of the sigmoidal logistic function, fuzzy logic, a neural network, and wavelet transform was established for the prediction of the transmitted signal code from borehole to surface with effluent quality. Moreover, the complete workflow involved the pre-processing of the dataset via an adaptive processing technique before training the network and a logistic response algorithm for acquiring the optimal parameters for the prediction of signal codes. A data reduction and subtractive scheme are employed as a pre-processing technique to better characterize the signals as eight attributes and, ultimately, reduce the computation cost. Furthermore, the frequency-time characteristics of the predicted signal are controlled by selecting an appropriate number of wavelet bases “N” and the pre-selected range for pij3 to be used prior to the training of the FWNN system. The results, leading to the prediction of the BPSK characteristics, indicate that the pre-selection of the N value and pij3 range provides a significantly accurate prediction. We validate its prediction on both synthetic and pseudo-synthetic datasets. The results indicated that the fuzzy wavelet neural network with logistic response had a high operation speed and good quality prediction, and the correspondingly trained model was more advantageous than the traditional backward propagation network in prediction accuracy. The proposed model can be used for analyzing signals with a signal-to-noise ratio lower than 1 dB effectively, which plays an important role in the electromagnetic telemetry system." @default.
- W3215092497 created "2021-12-06" @default.
- W3215092497 creator A5056179418 @default.
- W3215092497 creator A5058613332 @default.
- W3215092497 creator A5060573770 @default.
- W3215092497 creator A5078613260 @default.
- W3215092497 date "2021-11-17" @default.
- W3215092497 modified "2023-09-30" @default.
- W3215092497 title "Demodulation of EM Telemetry Data Using Fuzzy Wavelet Neural Network with Logistic Response" @default.
- W3215092497 cites W1546526880 @default.
- W3215092497 cites W1558733202 @default.
- W3215092497 cites W1822554159 @default.
- W3215092497 cites W1918973148 @default.
- W3215092497 cites W1949379625 @default.
- W3215092497 cites W1989665358 @default.
- W3215092497 cites W1995355625 @default.
- W3215092497 cites W2006447203 @default.
- W3215092497 cites W2026651112 @default.
- W3215092497 cites W2048449606 @default.
- W3215092497 cites W2085555526 @default.
- W3215092497 cites W2085686600 @default.
- W3215092497 cites W2098386213 @default.
- W3215092497 cites W2117599177 @default.
- W3215092497 cites W2134288234 @default.
- W3215092497 cites W2137226063 @default.
- W3215092497 cites W2155183862 @default.
- W3215092497 cites W2161507754 @default.
- W3215092497 cites W2171781101 @default.
- W3215092497 cites W2293747114 @default.
- W3215092497 cites W2727226283 @default.
- W3215092497 cites W2765832510 @default.
- W3215092497 cites W2901312569 @default.
- W3215092497 cites W2911497180 @default.
- W3215092497 cites W2990137738 @default.
- W3215092497 cites W3106396929 @default.
- W3215092497 doi "https://doi.org/10.3390/app112210877" @default.
- W3215092497 hasPublicationYear "2021" @default.
- W3215092497 type Work @default.
- W3215092497 sameAs 3215092497 @default.
- W3215092497 citedByCount "1" @default.
- W3215092497 countsByYear W32150924972022 @default.
- W3215092497 crossrefType "journal-article" @default.
- W3215092497 hasAuthorship W3215092497A5056179418 @default.
- W3215092497 hasAuthorship W3215092497A5058613332 @default.
- W3215092497 hasAuthorship W3215092497A5060573770 @default.
- W3215092497 hasAuthorship W3215092497A5078613260 @default.
- W3215092497 hasBestOaLocation W32150924971 @default.
- W3215092497 hasConcept C119857082 @default.
- W3215092497 hasConcept C124101348 @default.
- W3215092497 hasConcept C153180895 @default.
- W3215092497 hasConcept C154945302 @default.
- W3215092497 hasConcept C196216189 @default.
- W3215092497 hasConcept C41008148 @default.
- W3215092497 hasConcept C47432892 @default.
- W3215092497 hasConcept C50644808 @default.
- W3215092497 hasConcept C58166 @default.
- W3215092497 hasConcept C79403827 @default.
- W3215092497 hasConceptScore W3215092497C119857082 @default.
- W3215092497 hasConceptScore W3215092497C124101348 @default.
- W3215092497 hasConceptScore W3215092497C153180895 @default.
- W3215092497 hasConceptScore W3215092497C154945302 @default.
- W3215092497 hasConceptScore W3215092497C196216189 @default.
- W3215092497 hasConceptScore W3215092497C41008148 @default.
- W3215092497 hasConceptScore W3215092497C47432892 @default.
- W3215092497 hasConceptScore W3215092497C50644808 @default.
- W3215092497 hasConceptScore W3215092497C58166 @default.
- W3215092497 hasConceptScore W3215092497C79403827 @default.
- W3215092497 hasIssue "22" @default.
- W3215092497 hasLocation W32150924971 @default.
- W3215092497 hasLocation W32150924972 @default.
- W3215092497 hasOpenAccess W3215092497 @default.
- W3215092497 hasPrimaryLocation W32150924971 @default.
- W3215092497 hasRelatedWork W1577789985 @default.
- W3215092497 hasRelatedWork W1982375519 @default.
- W3215092497 hasRelatedWork W2001557060 @default.
- W3215092497 hasRelatedWork W2037328875 @default.
- W3215092497 hasRelatedWork W2163073107 @default.
- W3215092497 hasRelatedWork W2541950815 @default.
- W3215092497 hasRelatedWork W2545095649 @default.
- W3215092497 hasRelatedWork W2942471066 @default.
- W3215092497 hasRelatedWork W3003836766 @default.
- W3215092497 hasRelatedWork W1629725936 @default.
- W3215092497 hasVolume "11" @default.
- W3215092497 isParatext "false" @default.
- W3215092497 isRetracted "false" @default.
- W3215092497 magId "3215092497" @default.
- W3215092497 workType "article" @default.