Matches in SemOpenAlex for { <https://semopenalex.org/work/W3215114742> ?p ?o ?g. }
- W3215114742 abstract "Much has been invested in big data and artificial intelligence-based solutions for healthcare. However, few applications have been implemented in clinical practice. Early economic evaluations can help to improve decision-making by developers of analytics underlying these solutions aiming to increase the likelihood of successful implementation, but recommendations about their use are lacking. The aim of this study was to develop and apply a framework that positions best practice methods for economic evaluations alongside development of analytics, thereby enabling developers to identify barriers to success and to select analytics worth further investments.The framework was developed using literature, recommendations for economic evaluations and by applying the framework to use cases (chronic lymphocytic leukaemia (CLL), intensive care, diabetes). First, the feasibility of developing clinically relevant analytics was assessed and critical barriers to successful development and implementation identified. Economic evaluations were then used to determine critical thresholds and guide investment decisions.When using the framework to assist decision-making of developers of analytics, continuing development was not always feasible or worthwhile. Developing analytics for progressive CLL and diabetes was clinically relevant but not feasible with the data available. Alternatively, developing analytics for newly diagnosed CLL patients was feasible but continuing development was not considered worthwhile because the high drug costs made it economically unattractive for potential users. Alternatively, in the intensive care unit, analytics reduced mortality and per-patient costs when used to identify infections (- 0.5%, - €886) and to improve patient-ventilator interaction (- 3%, - €264). Both analytics have the potential to save money but the potential benefits of analytics that identify infections strongly depend on infection rate; a higher rate implies greater cost-savings.We present a framework that stimulates efficiency of development of analytics for big data and artificial intelligence-based solutions by selecting those applications of analytics for which development is feasible and worthwhile. For these applications, results from early economic evaluations can be used to guide investment decisions and identify critical requirements." @default.
- W3215114742 created "2021-12-06" @default.
- W3215114742 creator A5017248751 @default.
- W3215114742 creator A5020730241 @default.
- W3215114742 creator A5038426869 @default.
- W3215114742 creator A5080058154 @default.
- W3215114742 date "2021-11-29" @default.
- W3215114742 modified "2023-09-27" @default.
- W3215114742 title "How can we discover the most valuable types of big data and artificial intelligence-based solutions? A methodology for the efficient development of the underlying analytics that improve care" @default.
- W3215114742 cites W1912760547 @default.
- W3215114742 cites W1984083594 @default.
- W3215114742 cites W2004670370 @default.
- W3215114742 cites W2033609349 @default.
- W3215114742 cites W2045030989 @default.
- W3215114742 cites W2060474624 @default.
- W3215114742 cites W2069301101 @default.
- W3215114742 cites W2073316020 @default.
- W3215114742 cites W2099966985 @default.
- W3215114742 cites W2113952938 @default.
- W3215114742 cites W2116789248 @default.
- W3215114742 cites W2134023402 @default.
- W3215114742 cites W2138657325 @default.
- W3215114742 cites W2140791589 @default.
- W3215114742 cites W2147713879 @default.
- W3215114742 cites W2163640332 @default.
- W3215114742 cites W2163923858 @default.
- W3215114742 cites W2165776429 @default.
- W3215114742 cites W2204188048 @default.
- W3215114742 cites W2226880313 @default.
- W3215114742 cites W2231579991 @default.
- W3215114742 cites W2308085519 @default.
- W3215114742 cites W2325854671 @default.
- W3215114742 cites W2341150408 @default.
- W3215114742 cites W2360955555 @default.
- W3215114742 cites W2395172628 @default.
- W3215114742 cites W2525984666 @default.
- W3215114742 cites W2527654804 @default.
- W3215114742 cites W2563025099 @default.
- W3215114742 cites W2770823471 @default.
- W3215114742 cites W2773783419 @default.
- W3215114742 cites W2790916396 @default.
- W3215114742 cites W2792826205 @default.
- W3215114742 cites W2793682084 @default.
- W3215114742 cites W2802668759 @default.
- W3215114742 cites W2888679364 @default.
- W3215114742 cites W2906694199 @default.
- W3215114742 cites W2908201961 @default.
- W3215114742 cites W2924794695 @default.
- W3215114742 cites W2940562610 @default.
- W3215114742 cites W2945960778 @default.
- W3215114742 cites W2946222382 @default.
- W3215114742 cites W2951484576 @default.
- W3215114742 cites W2951967845 @default.
- W3215114742 cites W2967844572 @default.
- W3215114742 cites W2969881216 @default.
- W3215114742 cites W2982580298 @default.
- W3215114742 cites W2996102097 @default.
- W3215114742 cites W2999020026 @default.
- W3215114742 cites W3000436556 @default.
- W3215114742 cites W3000686922 @default.
- W3215114742 cites W3008229722 @default.
- W3215114742 cites W3011403448 @default.
- W3215114742 cites W3012662704 @default.
- W3215114742 cites W3014127006 @default.
- W3215114742 cites W3036696959 @default.
- W3215114742 cites W3041148084 @default.
- W3215114742 cites W3112814111 @default.
- W3215114742 cites W3136933888 @default.
- W3215114742 cites W4213170825 @default.
- W3215114742 cites W4235907943 @default.
- W3215114742 cites W4251009301 @default.
- W3215114742 doi "https://doi.org/10.1186/s12911-021-01682-9" @default.
- W3215114742 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8628451" @default.
- W3215114742 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34844594" @default.
- W3215114742 hasPublicationYear "2021" @default.
- W3215114742 type Work @default.
- W3215114742 sameAs 3215114742 @default.
- W3215114742 citedByCount "2" @default.
- W3215114742 countsByYear W32151147422022 @default.
- W3215114742 crossrefType "journal-article" @default.
- W3215114742 hasAuthorship W3215114742A5017248751 @default.
- W3215114742 hasAuthorship W3215114742A5020730241 @default.
- W3215114742 hasAuthorship W3215114742A5038426869 @default.
- W3215114742 hasAuthorship W3215114742A5080058154 @default.
- W3215114742 hasBestOaLocation W32151147421 @default.
- W3215114742 hasConcept C124101348 @default.
- W3215114742 hasConcept C138816342 @default.
- W3215114742 hasConcept C144133560 @default.
- W3215114742 hasConcept C145642194 @default.
- W3215114742 hasConcept C159110408 @default.
- W3215114742 hasConcept C160735492 @default.
- W3215114742 hasConcept C162324750 @default.
- W3215114742 hasConcept C162853370 @default.
- W3215114742 hasConcept C189076506 @default.
- W3215114742 hasConcept C2522767166 @default.
- W3215114742 hasConcept C2767350 @default.
- W3215114742 hasConcept C37952496 @default.
- W3215114742 hasConcept C41008148 @default.
- W3215114742 hasConcept C4216890 @default.
- W3215114742 hasConcept C50522688 @default.