Matches in SemOpenAlex for { <https://semopenalex.org/work/W3215188971> ?p ?o ?g. }
- W3215188971 endingPage "A479" @default.
- W3215188971 startingPage "A457" @default.
- W3215188971 abstract "Numerical methods for random parametric PDEs can greatly benefit from adaptive refinement schemes, in particular when functional approximations are computed as in stochastic Galerkin and stochastic collocations methods. This work is concerned with a nonintrusive generalization of the adaptive Galerkin finite element method with residual-based error estimation. It combines the nonintrusive character of a randomized least squares method with the a posteriori error analysis of stochastic Galerkin methods. The proposed approach uses the variational Monte Carlo method to obtain a quasi-optimal low-rank approximation of the Galerkin projection in a highly efficient hierarchical tensor format. We derive an adaptive refinement algorithm which is steered by a reliable error estimator. Opposite to stochastic Galerkin methods, the approach is easily applicable to a wide range of problems, enabling a fully automated adjustment of all discretization parameters. Benchmark examples with affine and (unbounded) lognormal coefficient fields illustrate the performance of the nonintrusive adaptive algorithm, showing the expected convergence rates of single-level strategies." @default.
- W3215188971 created "2021-12-06" @default.
- W3215188971 creator A5020983841 @default.
- W3215188971 creator A5029823695 @default.
- W3215188971 creator A5046617182 @default.
- W3215188971 creator A5057535604 @default.
- W3215188971 date "2023-04-26" @default.
- W3215188971 modified "2023-09-30" @default.
- W3215188971 title "Adaptive Nonintrusive Reconstruction of Solutions to High-Dimensional Parametric PDEs" @default.
- W3215188971 cites W1023259281 @default.
- W3215188971 cites W105972687 @default.
- W3215188971 cites W1538934584 @default.
- W3215188971 cites W1885427747 @default.
- W3215188971 cites W1939142429 @default.
- W3215188971 cites W1966606705 @default.
- W3215188971 cites W1982421072 @default.
- W3215188971 cites W1982559793 @default.
- W3215188971 cites W1991777578 @default.
- W3215188971 cites W1993482030 @default.
- W3215188971 cites W1995406764 @default.
- W3215188971 cites W2001518794 @default.
- W3215188971 cites W2008058003 @default.
- W3215188971 cites W2036133196 @default.
- W3215188971 cites W2044959876 @default.
- W3215188971 cites W2049222546 @default.
- W3215188971 cites W2080348404 @default.
- W3215188971 cites W2083754610 @default.
- W3215188971 cites W2083845086 @default.
- W3215188971 cites W2092478820 @default.
- W3215188971 cites W2101552627 @default.
- W3215188971 cites W2137365186 @default.
- W3215188971 cites W2180064962 @default.
- W3215188971 cites W2292462371 @default.
- W3215188971 cites W2343408237 @default.
- W3215188971 cites W2538426846 @default.
- W3215188971 cites W2736093993 @default.
- W3215188971 cites W2750460732 @default.
- W3215188971 cites W2793574154 @default.
- W3215188971 cites W2794203769 @default.
- W3215188971 cites W2884465099 @default.
- W3215188971 cites W2900922842 @default.
- W3215188971 cites W2962840746 @default.
- W3215188971 cites W2963103105 @default.
- W3215188971 cites W2963604924 @default.
- W3215188971 cites W2963798430 @default.
- W3215188971 cites W2964311702 @default.
- W3215188971 cites W2982295692 @default.
- W3215188971 cites W3021293439 @default.
- W3215188971 cites W3037484550 @default.
- W3215188971 cites W3047887441 @default.
- W3215188971 cites W3080922984 @default.
- W3215188971 cites W3103239355 @default.
- W3215188971 cites W3161792218 @default.
- W3215188971 cites W3165526918 @default.
- W3215188971 cites W3200434044 @default.
- W3215188971 cites W3200509021 @default.
- W3215188971 cites W4206540115 @default.
- W3215188971 cites W4294755712 @default.
- W3215188971 cites W79554687 @default.
- W3215188971 doi "https://doi.org/10.1137/21m1461988" @default.
- W3215188971 hasPublicationYear "2023" @default.
- W3215188971 type Work @default.
- W3215188971 sameAs 3215188971 @default.
- W3215188971 citedByCount "1" @default.
- W3215188971 countsByYear W32151889712023 @default.
- W3215188971 crossrefType "journal-article" @default.
- W3215188971 hasAuthorship W3215188971A5020983841 @default.
- W3215188971 hasAuthorship W3215188971A5029823695 @default.
- W3215188971 hasAuthorship W3215188971A5046617182 @default.
- W3215188971 hasAuthorship W3215188971A5057535604 @default.
- W3215188971 hasBestOaLocation W32151889712 @default.
- W3215188971 hasConcept C105795698 @default.
- W3215188971 hasConcept C111472728 @default.
- W3215188971 hasConcept C11413529 @default.
- W3215188971 hasConcept C117251300 @default.
- W3215188971 hasConcept C121332964 @default.
- W3215188971 hasConcept C126255220 @default.
- W3215188971 hasConcept C134306372 @default.
- W3215188971 hasConcept C135628077 @default.
- W3215188971 hasConcept C138885662 @default.
- W3215188971 hasConcept C185429906 @default.
- W3215188971 hasConcept C186899397 @default.
- W3215188971 hasConcept C202444582 @default.
- W3215188971 hasConcept C28826006 @default.
- W3215188971 hasConcept C32230216 @default.
- W3215188971 hasConcept C33923547 @default.
- W3215188971 hasConcept C57493831 @default.
- W3215188971 hasConcept C73000952 @default.
- W3215188971 hasConcept C75553542 @default.
- W3215188971 hasConcept C92244383 @default.
- W3215188971 hasConcept C92757383 @default.
- W3215188971 hasConcept C97355855 @default.
- W3215188971 hasConceptScore W3215188971C105795698 @default.
- W3215188971 hasConceptScore W3215188971C111472728 @default.
- W3215188971 hasConceptScore W3215188971C11413529 @default.
- W3215188971 hasConceptScore W3215188971C117251300 @default.
- W3215188971 hasConceptScore W3215188971C121332964 @default.
- W3215188971 hasConceptScore W3215188971C126255220 @default.