Matches in SemOpenAlex for { <https://semopenalex.org/work/W3215208037> ?p ?o ?g. }
Showing items 1 to 60 of
60
with 100 items per page.
- W3215208037 abstract "Background: Pulmonary arterial hypertension (PAH) is a progressive disease with high morbidity and mortality. Assessing PAH prognosis is paramount for guiding therapy and transthoracic echocardiography (TTE) remains the mainstay of regular assessment. We hypothesized that deep learning networks (DL) could provide essential prognostic information of comparable quality as a comprehensive expert assessment. Methods: All PAH pts. with routine TTE between 2005 and 2018 were included. A combination of U-Net DL-frameworks was developed to automatically segment cardiac chambers and extract geometric information throughout the cardiac cycle (see Figure ). The prognostic value of chamber dimensions and functional parameters for all-cause mortality was assessed using Cox proportional-hazard analyses. Results: Overall, 408 PAH patients (median age 59 years, 74% female; 34% idiopathic PAH, 66% associated PAH) were included. Over a median follow-up of 0.6 years , 196 patients died. On univariable Cox analysis automatically determined right atrial area, right ventricular (RV) area, RV fractional area change, RV inflow diameter, RV length, left ventricular (LV) eccentricity index (p<0.001 for all) were significantly related to mortality. On multivariable analysis DL-based RV fractional area change (HR 0.97/%, p=0.004), right atrial area (HR 1.03/cm 2 , p=0.01) and LV longitudinal diameter (HR 0.92/cm, p=0.02) emerged as independent predictors of outcome. The prognostic value of all EDL parameters was non-inferior to traditional measures obtained by expert echocardiographers (p>0.05 for all concordance-C comparisons). Conclusions: The current study demonstrates for the first-time the utility of ensemble-based DL algorithms to assess prognosis of PAH based on a large tertiary centre dataset. Due to the automated process, these DL algorithms can ultimately serve as online based decision-making tools and the performance is comparable to expert investigators." @default.
- W3215208037 created "2021-12-06" @default.
- W3215208037 creator A5000432967 @default.
- W3215208037 creator A5006535340 @default.
- W3215208037 creator A5008115982 @default.
- W3215208037 creator A5013431327 @default.
- W3215208037 creator A5041428163 @default.
- W3215208037 creator A5054951910 @default.
- W3215208037 creator A5059984203 @default.
- W3215208037 date "2021-11-16" @default.
- W3215208037 modified "2023-10-16" @default.
- W3215208037 title "Abstract 13277: Deep Learning Networks Trained on Routine Echocardiography Images Provide Expert Level Prognostication in Patients With Pulmonary Hypertension: A Study on 408 Patients From an Expert Centre" @default.
- W3215208037 doi "https://doi.org/10.1161/circ.144.suppl_1.13277" @default.
- W3215208037 hasPublicationYear "2021" @default.
- W3215208037 type Work @default.
- W3215208037 sameAs 3215208037 @default.
- W3215208037 citedByCount "0" @default.
- W3215208037 crossrefType "journal-article" @default.
- W3215208037 hasAuthorship W3215208037A5000432967 @default.
- W3215208037 hasAuthorship W3215208037A5006535340 @default.
- W3215208037 hasAuthorship W3215208037A5008115982 @default.
- W3215208037 hasAuthorship W3215208037A5013431327 @default.
- W3215208037 hasAuthorship W3215208037A5041428163 @default.
- W3215208037 hasAuthorship W3215208037A5054951910 @default.
- W3215208037 hasAuthorship W3215208037A5059984203 @default.
- W3215208037 hasConcept C126322002 @default.
- W3215208037 hasConcept C160798450 @default.
- W3215208037 hasConcept C164705383 @default.
- W3215208037 hasConcept C207103383 @default.
- W3215208037 hasConcept C2780930700 @default.
- W3215208037 hasConcept C44249647 @default.
- W3215208037 hasConcept C50382708 @default.
- W3215208037 hasConcept C71924100 @default.
- W3215208037 hasConceptScore W3215208037C126322002 @default.
- W3215208037 hasConceptScore W3215208037C160798450 @default.
- W3215208037 hasConceptScore W3215208037C164705383 @default.
- W3215208037 hasConceptScore W3215208037C207103383 @default.
- W3215208037 hasConceptScore W3215208037C2780930700 @default.
- W3215208037 hasConceptScore W3215208037C44249647 @default.
- W3215208037 hasConceptScore W3215208037C50382708 @default.
- W3215208037 hasConceptScore W3215208037C71924100 @default.
- W3215208037 hasIssue "Suppl_1" @default.
- W3215208037 hasLocation W32152080371 @default.
- W3215208037 hasOpenAccess W3215208037 @default.
- W3215208037 hasPrimaryLocation W32152080371 @default.
- W3215208037 hasRelatedWork W2038756602 @default.
- W3215208037 hasRelatedWork W2137017130 @default.
- W3215208037 hasRelatedWork W2213857236 @default.
- W3215208037 hasRelatedWork W2337264823 @default.
- W3215208037 hasRelatedWork W2572837865 @default.
- W3215208037 hasRelatedWork W3049631826 @default.
- W3215208037 hasRelatedWork W3141700921 @default.
- W3215208037 hasRelatedWork W3146182361 @default.
- W3215208037 hasRelatedWork W3202449578 @default.
- W3215208037 hasRelatedWork W4366463952 @default.
- W3215208037 hasVolume "144" @default.
- W3215208037 isParatext "false" @default.
- W3215208037 isRetracted "false" @default.
- W3215208037 magId "3215208037" @default.
- W3215208037 workType "article" @default.