Matches in SemOpenAlex for { <https://semopenalex.org/work/W3215234080> ?p ?o ?g. }
- W3215234080 endingPage "110817" @default.
- W3215234080 startingPage "110817" @default.
- W3215234080 abstract "The past few years have seen a significant increase in availability of whole genome sequencing information, allowing for its incorporation in predictive modeling for foodborne pathogens to account for inter- and intra-species differences in their virulence. However, this is hindered by the inability of traditional statistical methods to analyze such large amounts of data compared to the number of observations/isolates. In this study, we have explored the applicability of machine learning (ML) models to predict the disease outcome, while identifying features that exert a significant effect on the prediction. This study was conducted on Salmonella enterica, a major foodborne pathogen with considerable inter- and intra-serovar variation. WGS of isolates obtained from various sources (i.e., human, chicken, and swine) were used as input in four machine learning models (logistic regression with ridge, random forest, support vector machine, and AdaBoost) to classify isolates based on disease severity (extraintestinal vs. gastrointestinal) in the host. The predictive performances of all models were tested with and without Elastic Net regularization to combat dimensionality issues. Elastic Net-regularized logistic regression model showed the best area under the receiver operating characteristic curve (AUC-ROC; 0.86) and outcome prediction accuracy (0.76). Additionally, genes coding for transcriptional regulation, acidic, oxidative, and anaerobic stress response, and antibiotic resistance were found to be significant predictors of disease severity. These genes, which were significantly associated with each outcome, could possibly be input in amended, gene-expression-specific predictive models to estimate virulence pattern-specific effect of Salmonella and other foodborne pathogens on human health." @default.
- W3215234080 created "2021-12-06" @default.
- W3215234080 creator A5018964683 @default.
- W3215234080 creator A5054423424 @default.
- W3215234080 creator A5061457841 @default.
- W3215234080 creator A5083212573 @default.
- W3215234080 date "2022-01-01" @default.
- W3215234080 modified "2023-10-15" @default.
- W3215234080 title "Exploring the predictive capability of advanced machine learning in identifying severe disease phenotype in Salmonella enterica" @default.
- W3215234080 cites W1505191356 @default.
- W3215234080 cites W1964525347 @default.
- W3215234080 cites W1972153129 @default.
- W3215234080 cites W1978488091 @default.
- W3215234080 cites W1981262889 @default.
- W3215234080 cites W1999966058 @default.
- W3215234080 cites W200569373 @default.
- W3215234080 cites W2019575783 @default.
- W3215234080 cites W2023413937 @default.
- W3215234080 cites W2029426756 @default.
- W3215234080 cites W2032549039 @default.
- W3215234080 cites W2037655921 @default.
- W3215234080 cites W2041963100 @default.
- W3215234080 cites W2043235003 @default.
- W3215234080 cites W2045257928 @default.
- W3215234080 cites W2049546497 @default.
- W3215234080 cites W2060947741 @default.
- W3215234080 cites W2063756105 @default.
- W3215234080 cites W2070534370 @default.
- W3215234080 cites W2073727170 @default.
- W3215234080 cites W2084150578 @default.
- W3215234080 cites W2084341220 @default.
- W3215234080 cites W2088510902 @default.
- W3215234080 cites W2102150307 @default.
- W3215234080 cites W2105924780 @default.
- W3215234080 cites W2108034552 @default.
- W3215234080 cites W2116901163 @default.
- W3215234080 cites W2120733092 @default.
- W3215234080 cites W2122825543 @default.
- W3215234080 cites W2123676422 @default.
- W3215234080 cites W2127081697 @default.
- W3215234080 cites W2135146244 @default.
- W3215234080 cites W2140405760 @default.
- W3215234080 cites W2147883992 @default.
- W3215234080 cites W2150201619 @default.
- W3215234080 cites W2150965754 @default.
- W3215234080 cites W2152009977 @default.
- W3215234080 cites W2155404525 @default.
- W3215234080 cites W2157150618 @default.
- W3215234080 cites W2168602111 @default.
- W3215234080 cites W2169088065 @default.
- W3215234080 cites W2178074935 @default.
- W3215234080 cites W2230887875 @default.
- W3215234080 cites W2243986007 @default.
- W3215234080 cites W2244486986 @default.
- W3215234080 cites W2261137479 @default.
- W3215234080 cites W2343683244 @default.
- W3215234080 cites W2346124616 @default.
- W3215234080 cites W2519963171 @default.
- W3215234080 cites W2542103377 @default.
- W3215234080 cites W2554135465 @default.
- W3215234080 cites W2753382261 @default.
- W3215234080 cites W2785603479 @default.
- W3215234080 cites W2804500674 @default.
- W3215234080 cites W2899879084 @default.
- W3215234080 cites W2903253696 @default.
- W3215234080 cites W2903317479 @default.
- W3215234080 cites W2943937192 @default.
- W3215234080 cites W2944954104 @default.
- W3215234080 cites W2945103729 @default.
- W3215234080 cites W2946991073 @default.
- W3215234080 cites W2950190620 @default.
- W3215234080 cites W2955844127 @default.
- W3215234080 cites W2962322715 @default.
- W3215234080 cites W2997183977 @default.
- W3215234080 cites W3004732066 @default.
- W3215234080 cites W4210702584 @default.
- W3215234080 cites W4241510271 @default.
- W3215234080 doi "https://doi.org/10.1016/j.foodres.2021.110817" @default.
- W3215234080 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34980422" @default.
- W3215234080 hasPublicationYear "2022" @default.
- W3215234080 type Work @default.
- W3215234080 sameAs 3215234080 @default.
- W3215234080 citedByCount "6" @default.
- W3215234080 countsByYear W32152340802022 @default.
- W3215234080 countsByYear W32152340802023 @default.
- W3215234080 crossrefType "journal-article" @default.
- W3215234080 hasAuthorship W3215234080A5018964683 @default.
- W3215234080 hasAuthorship W3215234080A5054423424 @default.
- W3215234080 hasAuthorship W3215234080A5061457841 @default.
- W3215234080 hasAuthorship W3215234080A5083212573 @default.
- W3215234080 hasBestOaLocation W32152340801 @default.
- W3215234080 hasConcept C104317684 @default.
- W3215234080 hasConcept C119857082 @default.
- W3215234080 hasConcept C12267149 @default.
- W3215234080 hasConcept C126322002 @default.
- W3215234080 hasConcept C148483581 @default.
- W3215234080 hasConcept C151956035 @default.
- W3215234080 hasConcept C154945302 @default.