Matches in SemOpenAlex for { <https://semopenalex.org/work/W3215260041> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W3215260041 endingPage "467" @default.
- W3215260041 startingPage "453" @default.
- W3215260041 abstract "Data availability in a wide variety of domains has boosted the use of Machine Learning techniques for knowledge discovery and classification. The performance of a technique in a given classification task is significantly impacted by specific characteristics of the dataset, which makes the problem of choosing the most adequate approach a challenging one. Meta-Learning approaches, which learn from meta-features calculated from the dataset, have been successfully used to suggest the most suitable classification algorithms for specific datasets. This work proposes the adaptation of clustering measures based on internal indices for supervised problems as additional meta-features in the process of learning a recommendation system for classification tasks. The gains in performance due to Meta-Learning and the additional meta-features are investigated with experiments based on 400 datasets, representing diverse application contexts and domains. Results suggest that (i) meta-learning is a viable solution for recommending a classifier, (ii) the use of clustering features can contribute to the performance of the recommendation system, and (iii) the computational cost of Meta-Learning is substantially smaller than that of running all candidate classifiers in order to select the best." @default.
- W3215260041 created "2021-12-06" @default.
- W3215260041 creator A5000238517 @default.
- W3215260041 creator A5001908034 @default.
- W3215260041 creator A5004221623 @default.
- W3215260041 creator A5079499583 @default.
- W3215260041 creator A5079832994 @default.
- W3215260041 date "2021-01-01" @default.
- W3215260041 modified "2023-10-16" @default.
- W3215260041 title "Evaluating Clustering Meta-features for Classifier Recommendation" @default.
- W3215260041 cites W1488960379 @default.
- W3215260041 cites W1495775210 @default.
- W3215260041 cites W1559701175 @default.
- W3215260041 cites W1563088657 @default.
- W3215260041 cites W1963678392 @default.
- W3215260041 cites W1987971958 @default.
- W3215260041 cites W1996747841 @default.
- W3215260041 cites W2002229540 @default.
- W3215260041 cites W2029064186 @default.
- W3215260041 cites W2051224630 @default.
- W3215260041 cites W2085487226 @default.
- W3215260041 cites W2089213632 @default.
- W3215260041 cites W2090136295 @default.
- W3215260041 cites W2129066856 @default.
- W3215260041 cites W2135945534 @default.
- W3215260041 cites W2171975443 @default.
- W3215260041 cites W2246204122 @default.
- W3215260041 cites W2294912085 @default.
- W3215260041 cites W2775947831 @default.
- W3215260041 cites W2784287478 @default.
- W3215260041 cites W2889300381 @default.
- W3215260041 cites W2898576334 @default.
- W3215260041 cites W2902777483 @default.
- W3215260041 cites W2911964244 @default.
- W3215260041 cites W3091590903 @default.
- W3215260041 cites W4252731897 @default.
- W3215260041 doi "https://doi.org/10.1007/978-3-030-91702-9_30" @default.
- W3215260041 hasPublicationYear "2021" @default.
- W3215260041 type Work @default.
- W3215260041 sameAs 3215260041 @default.
- W3215260041 citedByCount "1" @default.
- W3215260041 countsByYear W32152600412022 @default.
- W3215260041 crossrefType "book-chapter" @default.
- W3215260041 hasAuthorship W3215260041A5000238517 @default.
- W3215260041 hasAuthorship W3215260041A5001908034 @default.
- W3215260041 hasAuthorship W3215260041A5004221623 @default.
- W3215260041 hasAuthorship W3215260041A5079499583 @default.
- W3215260041 hasAuthorship W3215260041A5079832994 @default.
- W3215260041 hasConcept C119857082 @default.
- W3215260041 hasConcept C124101348 @default.
- W3215260041 hasConcept C153180895 @default.
- W3215260041 hasConcept C154945302 @default.
- W3215260041 hasConcept C41008148 @default.
- W3215260041 hasConcept C73555534 @default.
- W3215260041 hasConcept C95623464 @default.
- W3215260041 hasConceptScore W3215260041C119857082 @default.
- W3215260041 hasConceptScore W3215260041C124101348 @default.
- W3215260041 hasConceptScore W3215260041C153180895 @default.
- W3215260041 hasConceptScore W3215260041C154945302 @default.
- W3215260041 hasConceptScore W3215260041C41008148 @default.
- W3215260041 hasConceptScore W3215260041C73555534 @default.
- W3215260041 hasConceptScore W3215260041C95623464 @default.
- W3215260041 hasLocation W32152600411 @default.
- W3215260041 hasOpenAccess W3215260041 @default.
- W3215260041 hasPrimaryLocation W32152600411 @default.
- W3215260041 hasRelatedWork W2001652754 @default.
- W3215260041 hasRelatedWork W2167582322 @default.
- W3215260041 hasRelatedWork W2379065761 @default.
- W3215260041 hasRelatedWork W2549006548 @default.
- W3215260041 hasRelatedWork W2784352036 @default.
- W3215260041 hasRelatedWork W2807311372 @default.
- W3215260041 hasRelatedWork W2961085424 @default.
- W3215260041 hasRelatedWork W2972035100 @default.
- W3215260041 hasRelatedWork W3043252291 @default.
- W3215260041 hasRelatedWork W4214932115 @default.
- W3215260041 isParatext "false" @default.
- W3215260041 isRetracted "false" @default.
- W3215260041 magId "3215260041" @default.
- W3215260041 workType "book-chapter" @default.