Matches in SemOpenAlex for { <https://semopenalex.org/work/W3215297065> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W3215297065 endingPage "101220" @default.
- W3215297065 startingPage "101220" @default.
- W3215297065 abstract "Prediction of curve progression risk in adolescent idiopathic scoliosis (AIS) remains elusive. Prior studies have revealed the potential for three-dimensional (3D) morphological parameters to prognosticate progression, but these require specialized biplanar imaging equipment and labor-intensive software reconstruction. This study aimed to formulate a deep learning model with standing posteroanterior (PA) X-rays at first clinic visit to differentiate between progressive (P) and non-progressive (NP) curves.For this retrospective cohort study, we identified patients presenting with AIS between October 2015 to April 2020 at our tertiary referral centre. Patients with mild curvatures (11 - 30o) who were skeletally immature (Risser sign of ≤2) were recruited. Patients receiving biplanar X-ray radiographs (EOS™) were divided between a training-cross-validation cohort (328 patients) and independent testing cohort (110 patients). Another 52 patients receiving standard PA spinal X-rays were recruited for cross-platform validation. Following 3D reconstruction, we designated the major curve apex upon PA X-rays as the region of interest (ROI) for machine learning. A self-attentive capsule network was constructed to differentiate between curves manifesting P and NP trajectories. A two-stage transfer learning strategy was introduced to pre-train and fine-tune the model. Model performance (accuracy, sensitivity, specificity) was compared to that of traditional convolutional neural networks (CNNs) and a clinical parameter-based logistic regression model.3D reconstruction identified that apical rotation of the major curve and torsion were significantly different between P and NP curve trajectories. Our predictive model utilizing an ROI centered on the major curve apex achieved an accuracy of 76.6%, a sensitivity of 75.2% and a specificity of 80.2% upon independent testing. Cross-platform performance upon standard standing PA X-rays yielded an accuracy of 77.1%, a sensitivity of 73.5% and a specificity of 81.0%. Errors in prediction occurred when the degree of apical rotation / torsion was discrepant from that of the subsequent curve trajectory but could be rectified by considering serial X-rays. Performance was superior to that of traditional CNNs as well as clinical parameter-based regression models.This is the first report of automated prediction of AIS curve progression based on radiomics and deep learning, towards directing treatment strategy at first visit. Patients predicted to be at-risk of progression may be counselled to receive early bracing with enforcement of treatment compliance. Over-treatment may be avoided in curves deemed to be non-progressive. Results need to be consolidated in larger sample populations of different ethnicities.The Society for the Relief of Disabled Children (SRDC)." @default.
- W3215297065 created "2021-12-06" @default.
- W3215297065 creator A5000954907 @default.
- W3215297065 creator A5019230524 @default.
- W3215297065 creator A5029561191 @default.
- W3215297065 creator A5033785543 @default.
- W3215297065 date "2021-12-01" @default.
- W3215297065 modified "2023-10-14" @default.
- W3215297065 title "Application of deep learning upon spinal radiographs to predict progression in adolescent idiopathic scoliosis at first clinic visit" @default.
- W3215297065 cites W2007178835 @default.
- W3215297065 cites W2023675491 @default.
- W3215297065 cites W2037977150 @default.
- W3215297065 cites W2047144868 @default.
- W3215297065 cites W2060674527 @default.
- W3215297065 cites W2152809165 @default.
- W3215297065 cites W2159951527 @default.
- W3215297065 cites W2281843965 @default.
- W3215297065 cites W2289583994 @default.
- W3215297065 cites W2782784206 @default.
- W3215297065 cites W2783417669 @default.
- W3215297065 cites W2810405935 @default.
- W3215297065 cites W2895777734 @default.
- W3215297065 cites W2917635635 @default.
- W3215297065 cites W2985160761 @default.
- W3215297065 cites W2995525027 @default.
- W3215297065 cites W3004860654 @default.
- W3215297065 cites W3122046805 @default.
- W3215297065 doi "https://doi.org/10.1016/j.eclinm.2021.101220" @default.
- W3215297065 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34901796" @default.
- W3215297065 hasPublicationYear "2021" @default.
- W3215297065 type Work @default.
- W3215297065 sameAs 3215297065 @default.
- W3215297065 citedByCount "10" @default.
- W3215297065 countsByYear W32152970652022 @default.
- W3215297065 countsByYear W32152970652023 @default.
- W3215297065 crossrefType "journal-article" @default.
- W3215297065 hasAuthorship W3215297065A5000954907 @default.
- W3215297065 hasAuthorship W3215297065A5019230524 @default.
- W3215297065 hasAuthorship W3215297065A5029561191 @default.
- W3215297065 hasAuthorship W3215297065A5033785543 @default.
- W3215297065 hasBestOaLocation W32152970651 @default.
- W3215297065 hasConcept C126322002 @default.
- W3215297065 hasConcept C126838900 @default.
- W3215297065 hasConcept C141071460 @default.
- W3215297065 hasConcept C151956035 @default.
- W3215297065 hasConcept C154945302 @default.
- W3215297065 hasConcept C167135981 @default.
- W3215297065 hasConcept C2780955175 @default.
- W3215297065 hasConcept C36454342 @default.
- W3215297065 hasConcept C41008148 @default.
- W3215297065 hasConcept C58471807 @default.
- W3215297065 hasConcept C71924100 @default.
- W3215297065 hasConcept C72563966 @default.
- W3215297065 hasConceptScore W3215297065C126322002 @default.
- W3215297065 hasConceptScore W3215297065C126838900 @default.
- W3215297065 hasConceptScore W3215297065C141071460 @default.
- W3215297065 hasConceptScore W3215297065C151956035 @default.
- W3215297065 hasConceptScore W3215297065C154945302 @default.
- W3215297065 hasConceptScore W3215297065C167135981 @default.
- W3215297065 hasConceptScore W3215297065C2780955175 @default.
- W3215297065 hasConceptScore W3215297065C36454342 @default.
- W3215297065 hasConceptScore W3215297065C41008148 @default.
- W3215297065 hasConceptScore W3215297065C58471807 @default.
- W3215297065 hasConceptScore W3215297065C71924100 @default.
- W3215297065 hasConceptScore W3215297065C72563966 @default.
- W3215297065 hasLocation W32152970651 @default.
- W3215297065 hasLocation W32152970652 @default.
- W3215297065 hasLocation W32152970653 @default.
- W3215297065 hasLocation W32152970654 @default.
- W3215297065 hasOpenAccess W3215297065 @default.
- W3215297065 hasPrimaryLocation W32152970651 @default.
- W3215297065 hasRelatedWork W1482166240 @default.
- W3215297065 hasRelatedWork W2073607259 @default.
- W3215297065 hasRelatedWork W2114965713 @default.
- W3215297065 hasRelatedWork W2127821875 @default.
- W3215297065 hasRelatedWork W2149280644 @default.
- W3215297065 hasRelatedWork W2510914644 @default.
- W3215297065 hasRelatedWork W3113254314 @default.
- W3215297065 hasRelatedWork W3190029335 @default.
- W3215297065 hasRelatedWork W4306247841 @default.
- W3215297065 hasRelatedWork W4322722608 @default.
- W3215297065 hasVolume "42" @default.
- W3215297065 isParatext "false" @default.
- W3215297065 isRetracted "false" @default.
- W3215297065 magId "3215297065" @default.
- W3215297065 workType "article" @default.