Matches in SemOpenAlex for { <https://semopenalex.org/work/W3215302880> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W3215302880 abstract "Boletes are favored by consumers because of their delicious taste and high nutritional value. However, as the storage period increases, their fruiting bodies will grow microorganisms and produce substances harmful to the human body. Therefore, we need to identify the storage period of boletes to ensure their quality. In this article, two-dimensional correlation spectroscopy (2DCOS) images are directly used for deep learning modeling, and the complex spectral data analysis process is transformed into a simple digital image processing problem. We collected 2,018 samples of boletes. After laboratory cleaning, drying, grinding, and tablet compression, their Fourier transform mid-infrared (FT-MIR) spectroscopy data were obtained. Then, we acquired 18,162 spectral images belonging to nine datasets which are synchronous 2DCOS, asynchronous 2DCOS, and integrative 2DCOS (i2DCOS) spectra of 1,750–400, 1,450–1,000, and 1,150–1,000 cm –1 bands. For these data sets, we established nine deep residual convolutional neural network (ResNet) models to identify the storage period of boletes. The result shows that the accuracy with the train set, test set, and external validation set of the synchronous 2DCOS model on the 1,750–400-cm –1 band is 100%, and the loss value is close to zero, so this model is the best. The synchronous 2DCOS model on the 1,150–1,000-cm –1 band comes next, and these two models have high accuracy and generalization ability which can be used to identify the storage period of boletes. The results have certain practical application value and provide a scientific basis for the quality control and market management of bolete mushrooms. In conclusion, our method is novel and extends the application of deep learning in the food field. At the same time, it can be applied to other fields such as agriculture and herbal medicine." @default.
- W3215302880 created "2021-12-06" @default.
- W3215302880 creator A5004311849 @default.
- W3215302880 creator A5046154346 @default.
- W3215302880 creator A5080770327 @default.
- W3215302880 creator A5086326013 @default.
- W3215302880 date "2021-11-25" @default.
- W3215302880 modified "2023-09-25" @default.
- W3215302880 title "The Storage Period Discrimination of Bolete Mushrooms Based on Deep Learning Methods Combined With Two-Dimensional Correlation Spectroscopy and Integrative Two-Dimensional Correlation Spectroscopy" @default.
- W3215302880 cites W1975372451 @default.
- W3215302880 cites W1983071377 @default.
- W3215302880 cites W1984748433 @default.
- W3215302880 cites W2011078053 @default.
- W3215302880 cites W2014718988 @default.
- W3215302880 cites W2036109286 @default.
- W3215302880 cites W2053966575 @default.
- W3215302880 cites W2064409690 @default.
- W3215302880 cites W2065654321 @default.
- W3215302880 cites W2068343164 @default.
- W3215302880 cites W2075320002 @default.
- W3215302880 cites W2076761379 @default.
- W3215302880 cites W2090689951 @default.
- W3215302880 cites W2176950688 @default.
- W3215302880 cites W2194775991 @default.
- W3215302880 cites W2264674893 @default.
- W3215302880 cites W2507414078 @default.
- W3215302880 cites W2551321385 @default.
- W3215302880 cites W2558580397 @default.
- W3215302880 cites W2755549008 @default.
- W3215302880 cites W2774414127 @default.
- W3215302880 cites W2784111316 @default.
- W3215302880 cites W2789327756 @default.
- W3215302880 cites W2789876780 @default.
- W3215302880 cites W2790979755 @default.
- W3215302880 cites W2896571343 @default.
- W3215302880 cites W2919115771 @default.
- W3215302880 cites W2955503995 @default.
- W3215302880 cites W3016049512 @default.
- W3215302880 cites W3022788653 @default.
- W3215302880 cites W3105087942 @default.
- W3215302880 cites W3158568467 @default.
- W3215302880 cites W3185359342 @default.
- W3215302880 cites W3206809026 @default.
- W3215302880 doi "https://doi.org/10.3389/fmicb.2021.771428" @default.
- W3215302880 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34899656" @default.
- W3215302880 hasPublicationYear "2021" @default.
- W3215302880 type Work @default.
- W3215302880 sameAs 3215302880 @default.
- W3215302880 citedByCount "5" @default.
- W3215302880 countsByYear W32153028802022 @default.
- W3215302880 countsByYear W32153028802023 @default.
- W3215302880 crossrefType "journal-article" @default.
- W3215302880 hasAuthorship W3215302880A5004311849 @default.
- W3215302880 hasAuthorship W3215302880A5046154346 @default.
- W3215302880 hasAuthorship W3215302880A5080770327 @default.
- W3215302880 hasAuthorship W3215302880A5086326013 @default.
- W3215302880 hasBestOaLocation W32153028801 @default.
- W3215302880 hasConcept C153180895 @default.
- W3215302880 hasConcept C154945302 @default.
- W3215302880 hasConcept C185592680 @default.
- W3215302880 hasConcept C186060115 @default.
- W3215302880 hasConcept C33923547 @default.
- W3215302880 hasConcept C41008148 @default.
- W3215302880 hasConcept C58489278 @default.
- W3215302880 hasConcept C81363708 @default.
- W3215302880 hasConcept C86803240 @default.
- W3215302880 hasConceptScore W3215302880C153180895 @default.
- W3215302880 hasConceptScore W3215302880C154945302 @default.
- W3215302880 hasConceptScore W3215302880C185592680 @default.
- W3215302880 hasConceptScore W3215302880C186060115 @default.
- W3215302880 hasConceptScore W3215302880C33923547 @default.
- W3215302880 hasConceptScore W3215302880C41008148 @default.
- W3215302880 hasConceptScore W3215302880C58489278 @default.
- W3215302880 hasConceptScore W3215302880C81363708 @default.
- W3215302880 hasConceptScore W3215302880C86803240 @default.
- W3215302880 hasFunder F4320321001 @default.
- W3215302880 hasFunder F4320323193 @default.
- W3215302880 hasFunder F4320336602 @default.
- W3215302880 hasLocation W32153028801 @default.
- W3215302880 hasLocation W32153028802 @default.
- W3215302880 hasLocation W32153028803 @default.
- W3215302880 hasLocation W32153028804 @default.
- W3215302880 hasOpenAccess W3215302880 @default.
- W3215302880 hasPrimaryLocation W32153028801 @default.
- W3215302880 hasRelatedWork W2748454020 @default.
- W3215302880 hasRelatedWork W2748952813 @default.
- W3215302880 hasRelatedWork W2767651786 @default.
- W3215302880 hasRelatedWork W2899084033 @default.
- W3215302880 hasRelatedWork W2912288872 @default.
- W3215302880 hasRelatedWork W3016958897 @default.
- W3215302880 hasRelatedWork W3119610945 @default.
- W3215302880 hasRelatedWork W3181746755 @default.
- W3215302880 hasRelatedWork W4283379348 @default.
- W3215302880 hasRelatedWork W564581980 @default.
- W3215302880 hasVolume "12" @default.
- W3215302880 isParatext "false" @default.
- W3215302880 isRetracted "false" @default.
- W3215302880 magId "3215302880" @default.
- W3215302880 workType "article" @default.