Matches in SemOpenAlex for { <https://semopenalex.org/work/W3215402034> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W3215402034 abstract "The paper introduces the hybrid method of Convolutional Neural Network (CNN) and machine learning methods as a classifier, that is Support Vector Machines and K-Nearest Neighbors for classifying the ischemic stroke based on CT scan images. CNN is used as a feature extraction and the machine learning methods used to replace the fully connected layers in CNN. The proposed method is used to reduce computation time and improve accuracy in classifying image data, because we know that deep learning is not efficient for small amounts of data, where the data we use is only 93 CT scan images obtained from Cipto Mangunkusumo General Hospital (RSCM), Indonesia. The architecture of CNN used in this research consists of 5 layers convolutional layers, ReLU, MaxPooling, batch normalization and dropout. The elapsed time required for CNN is 7.631490 seconds. The output of feature extraction is used as an input for SVM and KNN. SVM with linear kernel can correctly classify ischemic stroke, with 100% accuracy in the training model and 96% accuracy in testing model with a test size of 60%. KNN classify ischemic stroke, with 97.3% (#neighbors = 5) accuracy in training model with a test size of 60% and 90% (#neighbors = 10, 15, 25) accuracy in the testing model with a test size of 10%. Based on these results, the SVM produces the higher accuracy compared to KNN in classifying ischemic stroke using CNN as feature extraction based on CT scan images with a computation time of only 8.0973 seconds." @default.
- W3215402034 created "2021-12-06" @default.
- W3215402034 creator A5045153091 @default.
- W3215402034 creator A5050565876 @default.
- W3215402034 date "2021-04-01" @default.
- W3215402034 modified "2023-09-26" @default.
- W3215402034 title "Comparison Support Vector Machines and K-Nearest Neighbors in Classifying Ischemic Stroke by Using Convolutional Neural Networks as a Feature Extraction" @default.
- W3215402034 cites W1987452933 @default.
- W3215402034 cites W2142827986 @default.
- W3215402034 cites W2888853074 @default.
- W3215402034 cites W2972012913 @default.
- W3215402034 doi "https://doi.org/10.1145/3454127.3456606" @default.
- W3215402034 hasPublicationYear "2021" @default.
- W3215402034 type Work @default.
- W3215402034 sameAs 3215402034 @default.
- W3215402034 citedByCount "0" @default.
- W3215402034 crossrefType "proceedings-article" @default.
- W3215402034 hasAuthorship W3215402034A5045153091 @default.
- W3215402034 hasAuthorship W3215402034A5050565876 @default.
- W3215402034 hasConcept C108583219 @default.
- W3215402034 hasConcept C113238511 @default.
- W3215402034 hasConcept C11413529 @default.
- W3215402034 hasConcept C114614502 @default.
- W3215402034 hasConcept C115961682 @default.
- W3215402034 hasConcept C12267149 @default.
- W3215402034 hasConcept C136886441 @default.
- W3215402034 hasConcept C144024400 @default.
- W3215402034 hasConcept C153180895 @default.
- W3215402034 hasConcept C154945302 @default.
- W3215402034 hasConcept C16910744 @default.
- W3215402034 hasConcept C19165224 @default.
- W3215402034 hasConcept C199360897 @default.
- W3215402034 hasConcept C33923547 @default.
- W3215402034 hasConcept C41008148 @default.
- W3215402034 hasConcept C45374587 @default.
- W3215402034 hasConcept C52622490 @default.
- W3215402034 hasConcept C74193536 @default.
- W3215402034 hasConcept C75294576 @default.
- W3215402034 hasConcept C81363708 @default.
- W3215402034 hasConcept C95623464 @default.
- W3215402034 hasConceptScore W3215402034C108583219 @default.
- W3215402034 hasConceptScore W3215402034C113238511 @default.
- W3215402034 hasConceptScore W3215402034C11413529 @default.
- W3215402034 hasConceptScore W3215402034C114614502 @default.
- W3215402034 hasConceptScore W3215402034C115961682 @default.
- W3215402034 hasConceptScore W3215402034C12267149 @default.
- W3215402034 hasConceptScore W3215402034C136886441 @default.
- W3215402034 hasConceptScore W3215402034C144024400 @default.
- W3215402034 hasConceptScore W3215402034C153180895 @default.
- W3215402034 hasConceptScore W3215402034C154945302 @default.
- W3215402034 hasConceptScore W3215402034C16910744 @default.
- W3215402034 hasConceptScore W3215402034C19165224 @default.
- W3215402034 hasConceptScore W3215402034C199360897 @default.
- W3215402034 hasConceptScore W3215402034C33923547 @default.
- W3215402034 hasConceptScore W3215402034C41008148 @default.
- W3215402034 hasConceptScore W3215402034C45374587 @default.
- W3215402034 hasConceptScore W3215402034C52622490 @default.
- W3215402034 hasConceptScore W3215402034C74193536 @default.
- W3215402034 hasConceptScore W3215402034C75294576 @default.
- W3215402034 hasConceptScore W3215402034C81363708 @default.
- W3215402034 hasConceptScore W3215402034C95623464 @default.
- W3215402034 hasLocation W32154020341 @default.
- W3215402034 hasOpenAccess W3215402034 @default.
- W3215402034 hasPrimaryLocation W32154020341 @default.
- W3215402034 hasRelatedWork W1000462 @default.
- W3215402034 hasRelatedWork W11300528 @default.
- W3215402034 hasRelatedWork W11765363 @default.
- W3215402034 hasRelatedWork W12546350 @default.
- W3215402034 hasRelatedWork W1383942 @default.
- W3215402034 hasRelatedWork W2582698 @default.
- W3215402034 hasRelatedWork W2585641 @default.
- W3215402034 hasRelatedWork W5535156 @default.
- W3215402034 hasRelatedWork W8656678 @default.
- W3215402034 hasRelatedWork W9190101 @default.
- W3215402034 isParatext "false" @default.
- W3215402034 isRetracted "false" @default.
- W3215402034 magId "3215402034" @default.
- W3215402034 workType "article" @default.