Matches in SemOpenAlex for { <https://semopenalex.org/work/W3215419286> ?p ?o ?g. }
- W3215419286 abstract "We present a theoretical study of the intrusion of an ambient liquid into the pores of a nanocorrugated wall w. The pores are prefilled with a liquid lubricant that adheres to the walls of the pores more strongly than the ambient liquid does. The two liquids are modeled as a binary liquid mixture of two species of particles, A and B. The mixture can decompose into a liquid rich in A particles, representing the ambient liquid, and another one rich in B particles, representing the liquid lubricant. The wall is taken to attract the B particles more strongly than the A particles. The ratio w-A/w-B of these interaction strengths is changed in order to tune the contact angle θ_{AB} formed by the A-rich/B-rich liquid interface between the two fluids and a planar wall, composed of the same material as the one forming the pores. We use classical density functional theory in order to capture the effects of microscopic details on the intrusion transition, which occurs as the concentration of the minority component or the pressure in the bulk of the ambient liquid is varied, moving away from bulk liquid-liquid coexistence within the single-phase domain of the A-rich bulk ambient liquid. These liquid structures have been studied as a function of the contact angle θ_{AB} and for various widths and depths of the pores. We also studied the reverse process in which a pore initially filled with the ambient liquid is refilled with the liquid lubricant. The location of the intrusion transition, with respect to its dependence on the contact angle θ_{AB} and the width of the pore, qualitatively follows the corresponding shift of the capillary-coexistence line away from the bulk liquid-liquid coexistence line, as predicted by a macroscopic capillarity model. Quantitatively, the transition found in the microscopic approach occurs somewhat closer to the bulk liquid-liquid coexistence line than predicted by the macroscopic capillarity model. The quantitative discrepancies become larger for narrower cavities. In cases in which the wall is completely wetted by the lubricant (θ_{AB}=0) and for small contact angles, the reverse transition follows the same path as for intrusion; there is no hysteresis. For larger contact angles, hysteresis is observed. The width of the hysteresis increases with increasing contact angle. A reverse transition is not found inside the domain within which the ambient liquid forms a single phase in the bulk once θ_{AB} exceeds a geometry-dependent threshold value. According to the macroscopic capillarity theory, for the considered geometry, this is the case for θ_{AB}>54.7^{∘}. Our computations show, however, that nanoscale effects shift this threshold value to much higher values. This shift increases strongly if the widths of the pores become smaller (below about ten times the diameter of the A and B particles)." @default.
- W3215419286 created "2021-12-06" @default.
- W3215419286 creator A5004591888 @default.
- W3215419286 creator A5044296867 @default.
- W3215419286 creator A5072643291 @default.
- W3215419286 date "2022-04-20" @default.
- W3215419286 modified "2023-10-18" @default.
- W3215419286 title "Intrusion of liquids into liquid-infused surfaces with nanoscale roughness" @default.
- W3215419286 cites W1607557616 @default.
- W3215419286 cites W1845618662 @default.
- W3215419286 cites W1964200374 @default.
- W3215419286 cites W1965227741 @default.
- W3215419286 cites W1969182105 @default.
- W3215419286 cites W1970012721 @default.
- W3215419286 cites W1972270832 @default.
- W3215419286 cites W1972872072 @default.
- W3215419286 cites W1975140804 @default.
- W3215419286 cites W1983084194 @default.
- W3215419286 cites W1986633870 @default.
- W3215419286 cites W1986791114 @default.
- W3215419286 cites W1990737815 @default.
- W3215419286 cites W2000305415 @default.
- W3215419286 cites W2000883098 @default.
- W3215419286 cites W2002424765 @default.
- W3215419286 cites W2004401911 @default.
- W3215419286 cites W2004612535 @default.
- W3215419286 cites W2006604929 @default.
- W3215419286 cites W2011987157 @default.
- W3215419286 cites W2023884315 @default.
- W3215419286 cites W2028526096 @default.
- W3215419286 cites W2030827488 @default.
- W3215419286 cites W2033477554 @default.
- W3215419286 cites W2034787447 @default.
- W3215419286 cites W2042509876 @default.
- W3215419286 cites W2044670534 @default.
- W3215419286 cites W2054465370 @default.
- W3215419286 cites W2055108989 @default.
- W3215419286 cites W2064871903 @default.
- W3215419286 cites W2067425900 @default.
- W3215419286 cites W2069020163 @default.
- W3215419286 cites W2069830103 @default.
- W3215419286 cites W2069834501 @default.
- W3215419286 cites W2095564860 @default.
- W3215419286 cites W2101723279 @default.
- W3215419286 cites W2102658404 @default.
- W3215419286 cites W2103367826 @default.
- W3215419286 cites W2103977241 @default.
- W3215419286 cites W2106655249 @default.
- W3215419286 cites W2118166595 @default.
- W3215419286 cites W2131775303 @default.
- W3215419286 cites W2135624682 @default.
- W3215419286 cites W2143232069 @default.
- W3215419286 cites W2146704463 @default.
- W3215419286 cites W2152123134 @default.
- W3215419286 cites W2154014361 @default.
- W3215419286 cites W2163297994 @default.
- W3215419286 cites W2164023377 @default.
- W3215419286 cites W2299386857 @default.
- W3215419286 cites W2306822792 @default.
- W3215419286 cites W2330365600 @default.
- W3215419286 cites W2334535495 @default.
- W3215419286 cites W2345816007 @default.
- W3215419286 cites W2502483760 @default.
- W3215419286 cites W2514470275 @default.
- W3215419286 cites W2546874584 @default.
- W3215419286 cites W2557535880 @default.
- W3215419286 cites W2735388038 @default.
- W3215419286 cites W2745146816 @default.
- W3215419286 cites W2761675751 @default.
- W3215419286 cites W2787581636 @default.
- W3215419286 cites W2794258493 @default.
- W3215419286 cites W2795264566 @default.
- W3215419286 cites W2963254035 @default.
- W3215419286 cites W2969337669 @default.
- W3215419286 cites W2982515491 @default.
- W3215419286 cites W3043407661 @default.
- W3215419286 cites W3090069424 @default.
- W3215419286 cites W3101354889 @default.
- W3215419286 cites W3103620763 @default.
- W3215419286 cites W3105724557 @default.
- W3215419286 cites W3113039626 @default.
- W3215419286 cites W4232981981 @default.
- W3215419286 cites W4236300073 @default.
- W3215419286 cites W4240591300 @default.
- W3215419286 cites W4242824942 @default.
- W3215419286 doi "https://doi.org/10.1103/physreve.105.044803" @default.
- W3215419286 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35590586" @default.
- W3215419286 hasPublicationYear "2022" @default.
- W3215419286 type Work @default.
- W3215419286 sameAs 3215419286 @default.
- W3215419286 citedByCount "2" @default.
- W3215419286 countsByYear W32154192862023 @default.
- W3215419286 crossrefType "journal-article" @default.
- W3215419286 hasAuthorship W3215419286A5004591888 @default.
- W3215419286 hasAuthorship W3215419286A5044296867 @default.
- W3215419286 hasAuthorship W3215419286A5072643291 @default.
- W3215419286 hasBestOaLocation W32154192861 @default.
- W3215419286 hasConcept C121332964 @default.
- W3215419286 hasConcept C143895478 @default.
- W3215419286 hasConcept C159467904 @default.