Matches in SemOpenAlex for { <https://semopenalex.org/work/W3215465935> ?p ?o ?g. }
- W3215465935 endingPage "1502" @default.
- W3215465935 startingPage "1491" @default.
- W3215465935 abstract "Predictive Maintenance technologies are particularly appealing for Industrial Equipment producers, as they pave the way to the selling of high added-value services and customized maintenance plans. However, standard Predictive Maintenance approaches assume the availability of sensor measurements, and the costs associated with adding sensors or remotely accessing sensor readings may discourage the development of such technologies. In this context, Alarm Forecasting can be very useful as it represents a low-cost alternative or helpful support to sensor-based Predictive Maintenance. In this work, we propose a new formulation for the Alarm Forecasting problem, framed as a multi-label classification task. We present a novel deep learning-based approach called FORMULA (alarm FORecasting in MUlti-LAbel setting). FORMULA leverages Transformer, a popular Neural Network architecture in the field of Natural Language Processing. To cope with alarm imbalance, we draw inspiration from Segmentation and Object Detection. Thus, FORMULA is trained by minimizing the Weighted Focal Loss, which turns out to be very effective in predicting rare alarms. These alarms, even if they are difficult to predict by nature, often are business-critical. We assess the proposed approach on a representative real-world problem from the packaging industry. In particular, we show that it outperforms not only classic multilabel techniques but also models based on recurrent neural networks. As regards the latter, the proposed approach also exhibits a lower computational burden, both in terms of training time and model size. To foster research in the field and reproducibility, we also publicly share the alarm logs dataset and the code used to perform the experiments. <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>Note to Practitioners</i> —This paper was motivated by the problem of monitoring equipment in the scenario of dairy products packaging, under the mild assumption that logs of the alarm generated by the packaging machines are available. This paper proposes an alarm forecasting algorithm. Its goal is to predict if any alarm will occur in the future, based only on past alarm logs. The limits of the considered future window can be defined arbitrarily, so there is enough time to perform corrective actions. Thus, the proposed approach aims to prevent unexpected downtime that would not only hinder productivity but also imply significant material waste. The proposed approach leverages methodologies from Natural Language Processing and Object Detection to deal with rare alarms that are often very informative in the industrial scenario. Besides, both the code and the real-world industrial datasets used to evaluate the methodology are available publicly. Currently, the proposed approach only uses alarm logs. Especially in the context of Industry 4.0, where many sensory data may be available, this is a limitation. Thus, the described approach might be extended by integrating alarm logs with sensory data. This integration is expected to improve the estimation of equipment health state. The results described in this paper may find application not only in the manufacturing sector but also in different areas such as Cyber Security, where log files keep activity records of each process performed." @default.
- W3215465935 created "2021-12-06" @default.
- W3215465935 creator A5019668140 @default.
- W3215465935 creator A5026617079 @default.
- W3215465935 creator A5043391732 @default.
- W3215465935 creator A5082142436 @default.
- W3215465935 creator A5083742424 @default.
- W3215465935 date "2022-07-01" @default.
- W3215465935 modified "2023-10-11" @default.
- W3215465935 title "FORMULA: A Deep Learning Approach for Rare Alarms Predictions in Industrial Equipment" @default.
- W3215465935 cites W1977471222 @default.
- W3215465935 cites W1990089904 @default.
- W3215465935 cites W1999393241 @default.
- W3215465935 cites W2070847340 @default.
- W3215465935 cites W2072011083 @default.
- W3215465935 cites W2114315281 @default.
- W3215465935 cites W2122646361 @default.
- W3215465935 cites W2145827727 @default.
- W3215465935 cites W2328630450 @default.
- W3215465935 cites W2340576640 @default.
- W3215465935 cites W2470673105 @default.
- W3215465935 cites W2726977525 @default.
- W3215465935 cites W2742491462 @default.
- W3215465935 cites W2754319208 @default.
- W3215465935 cites W2760451156 @default.
- W3215465935 cites W2767094836 @default.
- W3215465935 cites W2790333971 @default.
- W3215465935 cites W2791610379 @default.
- W3215465935 cites W2898616093 @default.
- W3215465935 cites W2910187721 @default.
- W3215465935 cites W2944122571 @default.
- W3215465935 cites W2946518844 @default.
- W3215465935 cites W2963351448 @default.
- W3215465935 cites W2964098128 @default.
- W3215465935 cites W2970034819 @default.
- W3215465935 cites W2972818416 @default.
- W3215465935 cites W2983826605 @default.
- W3215465935 cites W3000983008 @default.
- W3215465935 cites W3005231240 @default.
- W3215465935 cites W3006676164 @default.
- W3215465935 cites W3017264588 @default.
- W3215465935 cites W3032068316 @default.
- W3215465935 cites W3034654297 @default.
- W3215465935 cites W3082433520 @default.
- W3215465935 cites W3091357257 @default.
- W3215465935 cites W3105625590 @default.
- W3215465935 doi "https://doi.org/10.1109/tase.2021.3127995" @default.
- W3215465935 hasPublicationYear "2022" @default.
- W3215465935 type Work @default.
- W3215465935 sameAs 3215465935 @default.
- W3215465935 citedByCount "1" @default.
- W3215465935 countsByYear W32154659352022 @default.
- W3215465935 crossrefType "journal-article" @default.
- W3215465935 hasAuthorship W3215465935A5019668140 @default.
- W3215465935 hasAuthorship W3215465935A5026617079 @default.
- W3215465935 hasAuthorship W3215465935A5043391732 @default.
- W3215465935 hasAuthorship W3215465935A5082142436 @default.
- W3215465935 hasAuthorship W3215465935A5083742424 @default.
- W3215465935 hasConcept C108583219 @default.
- W3215465935 hasConcept C119599485 @default.
- W3215465935 hasConcept C119857082 @default.
- W3215465935 hasConcept C127413603 @default.
- W3215465935 hasConcept C146978453 @default.
- W3215465935 hasConcept C151730666 @default.
- W3215465935 hasConcept C154945302 @default.
- W3215465935 hasConcept C165801399 @default.
- W3215465935 hasConcept C200601418 @default.
- W3215465935 hasConcept C202444582 @default.
- W3215465935 hasConcept C2776151529 @default.
- W3215465935 hasConcept C2779119184 @default.
- W3215465935 hasConcept C2779343474 @default.
- W3215465935 hasConcept C33923547 @default.
- W3215465935 hasConcept C41008148 @default.
- W3215465935 hasConcept C50644808 @default.
- W3215465935 hasConcept C66322947 @default.
- W3215465935 hasConcept C70452415 @default.
- W3215465935 hasConcept C86803240 @default.
- W3215465935 hasConcept C89600930 @default.
- W3215465935 hasConcept C9652623 @default.
- W3215465935 hasConceptScore W3215465935C108583219 @default.
- W3215465935 hasConceptScore W3215465935C119599485 @default.
- W3215465935 hasConceptScore W3215465935C119857082 @default.
- W3215465935 hasConceptScore W3215465935C127413603 @default.
- W3215465935 hasConceptScore W3215465935C146978453 @default.
- W3215465935 hasConceptScore W3215465935C151730666 @default.
- W3215465935 hasConceptScore W3215465935C154945302 @default.
- W3215465935 hasConceptScore W3215465935C165801399 @default.
- W3215465935 hasConceptScore W3215465935C200601418 @default.
- W3215465935 hasConceptScore W3215465935C202444582 @default.
- W3215465935 hasConceptScore W3215465935C2776151529 @default.
- W3215465935 hasConceptScore W3215465935C2779119184 @default.
- W3215465935 hasConceptScore W3215465935C2779343474 @default.
- W3215465935 hasConceptScore W3215465935C33923547 @default.
- W3215465935 hasConceptScore W3215465935C41008148 @default.
- W3215465935 hasConceptScore W3215465935C50644808 @default.
- W3215465935 hasConceptScore W3215465935C66322947 @default.
- W3215465935 hasConceptScore W3215465935C70452415 @default.
- W3215465935 hasConceptScore W3215465935C86803240 @default.