Matches in SemOpenAlex for { <https://semopenalex.org/work/W3215500742> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W3215500742 endingPage "8039" @default.
- W3215500742 startingPage "8039" @default.
- W3215500742 abstract "Artificial Intelligence (AI) is the revolutionary paradigm to empower sixth generation (6G) edge computing based e-healthcare for everyone. Thus, this research aims to promote an AI-based cost-effective and efficient healthcare application. The cyber physical system (CPS) is a key player in the internet world where humans and their personal devices such as cell phones, laptops, wearables, etc., facilitate the healthcare environment. The data extracting, examining and monitoring strategies from sensors and actuators in the entire medical landscape are facilitated by cloud-enabled technologies for absorbing and accepting the entire emerging wave of revolution. The efficient and accurate examination of voluminous data from the sensor devices poses restrictions in terms of bandwidth, delay and energy. Due to the heterogeneous nature of the Internet of Medical Things (IoMT), the driven healthcare system must be smart, interoperable, convergent, and reliable to provide pervasive and cost-effective healthcare platforms. Unfortunately, because of higher power consumption and lesser packet delivery rate, achieving interoperable, convergent, and reliable transmission is challenging in connected healthcare. In such a scenario, this paper has fourfold major contributions. The first contribution is the development of a single chip wearable electrocardiogram (ECG) with the support of an analog front end (AFE) chip model (i.e., ADS1292R) for gathering the ECG data to examine the health status of elderly or chronic patients with the IoT-based cyber physical system (CPS). The second proposes a fuzzy-based sustainable, interoperable, and reliable algorithm (FSIRA), which is an intelligent and self-adaptive decision-making approach to prioritize emergency and critical patients in association with the selected parameters for improving healthcare quality at reasonable costs. The third is the proposal of a specific cloud-based architecture for mobile and connected healthcare. The fourth is the identification of the right balance between reliability, packet loss ratio, convergence, latency, interoperability, and throughput to support an adaptive IoMT driven connected healthcare. It is examined and observed that our proposed approaches outperform the conventional techniques by providing high reliability, high convergence, interoperability, and a better foundation to analyze and interpret the accuracy in systems from a medical health aspect. As for the IoMT, an enabled healthcare cloud is the key ingredient on which to focus, as it also faces the big hurdle of less bandwidth, more delay and energy drain. Thus, we propose the mathematical trade-offs between bandwidth, interoperability, reliability, delay, and energy dissipation for IoMT-oriented smart healthcare over a 6G platform." @default.
- W3215500742 created "2021-12-06" @default.
- W3215500742 creator A5058246104 @default.
- W3215500742 creator A5073600185 @default.
- W3215500742 date "2021-12-01" @default.
- W3215500742 modified "2023-10-04" @default.
- W3215500742 title "AI-Enabled Framework for Fog Computing Driven E-Healthcare Applications" @default.
- W3215500742 cites W2070299625 @default.
- W3215500742 cites W2241486564 @default.
- W3215500742 cites W2273113005 @default.
- W3215500742 cites W2278331558 @default.
- W3215500742 cites W2318790069 @default.
- W3215500742 cites W2518937691 @default.
- W3215500742 cites W2591597668 @default.
- W3215500742 cites W2793431625 @default.
- W3215500742 cites W2883354362 @default.
- W3215500742 cites W2901518517 @default.
- W3215500742 cites W2912833214 @default.
- W3215500742 cites W2958091556 @default.
- W3215500742 cites W2964005248 @default.
- W3215500742 cites W2971022178 @default.
- W3215500742 cites W2979459011 @default.
- W3215500742 cites W3006387471 @default.
- W3215500742 cites W3007747556 @default.
- W3215500742 cites W3011296336 @default.
- W3215500742 cites W3019099014 @default.
- W3215500742 cites W3038041771 @default.
- W3215500742 cites W3088646623 @default.
- W3215500742 cites W3114032569 @default.
- W3215500742 cites W3144356199 @default.
- W3215500742 cites W3164080053 @default.
- W3215500742 cites W3199692331 @default.
- W3215500742 doi "https://doi.org/10.3390/s21238039" @default.
- W3215500742 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34884048" @default.
- W3215500742 hasPublicationYear "2021" @default.
- W3215500742 type Work @default.
- W3215500742 sameAs 3215500742 @default.
- W3215500742 citedByCount "17" @default.
- W3215500742 countsByYear W32155007422022 @default.
- W3215500742 countsByYear W32155007422023 @default.
- W3215500742 crossrefType "journal-article" @default.
- W3215500742 hasAuthorship W3215500742A5058246104 @default.
- W3215500742 hasAuthorship W3215500742A5073600185 @default.
- W3215500742 hasBestOaLocation W32155007421 @default.
- W3215500742 hasConcept C111919701 @default.
- W3215500742 hasConcept C136764020 @default.
- W3215500742 hasConcept C149635348 @default.
- W3215500742 hasConcept C150594956 @default.
- W3215500742 hasConcept C158379750 @default.
- W3215500742 hasConcept C160735492 @default.
- W3215500742 hasConcept C162324750 @default.
- W3215500742 hasConcept C179768478 @default.
- W3215500742 hasConcept C20136886 @default.
- W3215500742 hasConcept C2778456923 @default.
- W3215500742 hasConcept C38652104 @default.
- W3215500742 hasConcept C41008148 @default.
- W3215500742 hasConcept C50522688 @default.
- W3215500742 hasConcept C54290928 @default.
- W3215500742 hasConcept C79974875 @default.
- W3215500742 hasConceptScore W3215500742C111919701 @default.
- W3215500742 hasConceptScore W3215500742C136764020 @default.
- W3215500742 hasConceptScore W3215500742C149635348 @default.
- W3215500742 hasConceptScore W3215500742C150594956 @default.
- W3215500742 hasConceptScore W3215500742C158379750 @default.
- W3215500742 hasConceptScore W3215500742C160735492 @default.
- W3215500742 hasConceptScore W3215500742C162324750 @default.
- W3215500742 hasConceptScore W3215500742C179768478 @default.
- W3215500742 hasConceptScore W3215500742C20136886 @default.
- W3215500742 hasConceptScore W3215500742C2778456923 @default.
- W3215500742 hasConceptScore W3215500742C38652104 @default.
- W3215500742 hasConceptScore W3215500742C41008148 @default.
- W3215500742 hasConceptScore W3215500742C50522688 @default.
- W3215500742 hasConceptScore W3215500742C54290928 @default.
- W3215500742 hasConceptScore W3215500742C79974875 @default.
- W3215500742 hasIssue "23" @default.
- W3215500742 hasLocation W32155007421 @default.
- W3215500742 hasLocation W32155007422 @default.
- W3215500742 hasLocation W32155007423 @default.
- W3215500742 hasLocation W32155007424 @default.
- W3215500742 hasOpenAccess W3215500742 @default.
- W3215500742 hasPrimaryLocation W32155007421 @default.
- W3215500742 hasRelatedWork W2311668763 @default.
- W3215500742 hasRelatedWork W2574081570 @default.
- W3215500742 hasRelatedWork W2795266641 @default.
- W3215500742 hasRelatedWork W2895062937 @default.
- W3215500742 hasRelatedWork W2921541026 @default.
- W3215500742 hasRelatedWork W2954190566 @default.
- W3215500742 hasRelatedWork W3125059279 @default.
- W3215500742 hasRelatedWork W3147759778 @default.
- W3215500742 hasRelatedWork W3174382318 @default.
- W3215500742 hasRelatedWork W4327503302 @default.
- W3215500742 hasVolume "21" @default.
- W3215500742 isParatext "false" @default.
- W3215500742 isRetracted "false" @default.
- W3215500742 magId "3215500742" @default.
- W3215500742 workType "article" @default.