Matches in SemOpenAlex for { <https://semopenalex.org/work/W3215533741> ?p ?o ?g. }
- W3215533741 endingPage "1965" @default.
- W3215533741 startingPage "1956" @default.
- W3215533741 abstract "All-electric warships require high power-dense distribution system to power advanced weapon loads. Medium voltage dc (MVDC) power distribution is well suited to fulfill this requirement if certain risks are addressed. A particularly emerging problem is that the advanced pulsating loads draw large currents in extremely short periods of time and behave similarly to the shunt fault. The nature of the load and the operating cycle determines the unique structure of the pulse in time and frequency domains. If the load operating cycle consists of a finite number of transitions, then the corresponding frequency content of the current profile can be used to identify these transients. The wavelet transform is used to extract this useful frequency domain information from the sampled current data. A proposed computationally light data-driven machine learning based fault detection and load monitoring solution extracts the frequency domain features of the observed transient and compares that to a database of stored features to identify the observed transient, then to further identify faults that may create an abnormal disturbance in the load current profile such as arcing and shunt faults. It can be further applied to any load profile with prerequisite of a finite number of repetitive transients during normal condition. This paper focuses on the fault detection only and not for fault isolation while it can achieve isolation capability once the fault was diagnosed. In final real-time implementation, the recursive Haar stationary wavelet transform (SWT) fed computationally light machine learning is employed to validate the proposed scheme in a single-core Texas Instrument (TI) Digital Signal Processer (DSP) TMS320F28335." @default.
- W3215533741 created "2021-12-06" @default.
- W3215533741 creator A5003540482 @default.
- W3215533741 creator A5007570693 @default.
- W3215533741 creator A5060417935 @default.
- W3215533741 creator A5091461085 @default.
- W3215533741 date "2022-06-01" @default.
- W3215533741 modified "2023-10-17" @default.
- W3215533741 title "Wavelet Transform Data-Driven Machine Learning-Based Real-Time Fault Detection for Naval DC Pulsating Loads" @default.
- W3215533741 cites W1544864210 @default.
- W3215533741 cites W1589522475 @default.
- W3215533741 cites W1980136090 @default.
- W3215533741 cites W1983773606 @default.
- W3215533741 cites W2010314082 @default.
- W3215533741 cites W2013466602 @default.
- W3215533741 cites W2025423356 @default.
- W3215533741 cites W2036145503 @default.
- W3215533741 cites W2037072846 @default.
- W3215533741 cites W2045247177 @default.
- W3215533741 cites W2075901867 @default.
- W3215533741 cites W2111778016 @default.
- W3215533741 cites W2113395014 @default.
- W3215533741 cites W2116109972 @default.
- W3215533741 cites W2117995571 @default.
- W3215533741 cites W2120122927 @default.
- W3215533741 cites W2129166342 @default.
- W3215533741 cites W2131634249 @default.
- W3215533741 cites W2151729265 @default.
- W3215533741 cites W2155381372 @default.
- W3215533741 cites W2158519995 @default.
- W3215533741 cites W2170014209 @default.
- W3215533741 cites W2171429758 @default.
- W3215533741 cites W2228938056 @default.
- W3215533741 cites W2302941507 @default.
- W3215533741 cites W2317255732 @default.
- W3215533741 cites W2339800134 @default.
- W3215533741 cites W2527982987 @default.
- W3215533741 cites W2778745328 @default.
- W3215533741 cites W2808036458 @default.
- W3215533741 cites W2887258823 @default.
- W3215533741 cites W2889749712 @default.
- W3215533741 cites W2904029225 @default.
- W3215533741 cites W2904547669 @default.
- W3215533741 cites W2914798213 @default.
- W3215533741 cites W3134632764 @default.
- W3215533741 cites W3142038205 @default.
- W3215533741 doi "https://doi.org/10.1109/tte.2021.3130044" @default.
- W3215533741 hasPublicationYear "2022" @default.
- W3215533741 type Work @default.
- W3215533741 sameAs 3215533741 @default.
- W3215533741 citedByCount "5" @default.
- W3215533741 countsByYear W32155337412022 @default.
- W3215533741 countsByYear W32155337412023 @default.
- W3215533741 crossrefType "journal-article" @default.
- W3215533741 hasAuthorship W3215533741A5003540482 @default.
- W3215533741 hasAuthorship W3215533741A5007570693 @default.
- W3215533741 hasAuthorship W3215533741A5060417935 @default.
- W3215533741 hasAuthorship W3215533741A5091461085 @default.
- W3215533741 hasConcept C103824480 @default.
- W3215533741 hasConcept C111919701 @default.
- W3215533741 hasConcept C11413529 @default.
- W3215533741 hasConcept C121332964 @default.
- W3215533741 hasConcept C127313418 @default.
- W3215533741 hasConcept C127413603 @default.
- W3215533741 hasConcept C142433447 @default.
- W3215533741 hasConcept C152745839 @default.
- W3215533741 hasConcept C154945302 @default.
- W3215533741 hasConcept C163258240 @default.
- W3215533741 hasConcept C165205528 @default.
- W3215533741 hasConcept C172707124 @default.
- W3215533741 hasConcept C175551986 @default.
- W3215533741 hasConcept C19118579 @default.
- W3215533741 hasConcept C196216189 @default.
- W3215533741 hasConcept C24326235 @default.
- W3215533741 hasConcept C2775924081 @default.
- W3215533741 hasConcept C2780799671 @default.
- W3215533741 hasConcept C31972630 @default.
- W3215533741 hasConcept C41008148 @default.
- W3215533741 hasConcept C47432892 @default.
- W3215533741 hasConcept C47446073 @default.
- W3215533741 hasConcept C554190296 @default.
- W3215533741 hasConcept C62520636 @default.
- W3215533741 hasConcept C76155785 @default.
- W3215533741 hasConcept C79403827 @default.
- W3215533741 hasConcept C89227174 @default.
- W3215533741 hasConceptScore W3215533741C103824480 @default.
- W3215533741 hasConceptScore W3215533741C111919701 @default.
- W3215533741 hasConceptScore W3215533741C11413529 @default.
- W3215533741 hasConceptScore W3215533741C121332964 @default.
- W3215533741 hasConceptScore W3215533741C127313418 @default.
- W3215533741 hasConceptScore W3215533741C127413603 @default.
- W3215533741 hasConceptScore W3215533741C142433447 @default.
- W3215533741 hasConceptScore W3215533741C152745839 @default.
- W3215533741 hasConceptScore W3215533741C154945302 @default.
- W3215533741 hasConceptScore W3215533741C163258240 @default.
- W3215533741 hasConceptScore W3215533741C165205528 @default.
- W3215533741 hasConceptScore W3215533741C172707124 @default.
- W3215533741 hasConceptScore W3215533741C175551986 @default.