Matches in SemOpenAlex for { <https://semopenalex.org/work/W3215545852> ?p ?o ?g. }
- W3215545852 endingPage "919" @default.
- W3215545852 startingPage "884" @default.
- W3215545852 abstract "The present study employs daily data made available by the STR SHARE Center covering the period from 1 January 2010 to 31 January 2020 for six Viennese hotel classes and their total. The forecast variable of interest is hotel room demand. As forecast models, (1) Seasonal Naïve, (2) Error Trend Seasonal (ETS), (3) Seasonal Autoregressive Integrated Moving Average (SARIMA), (4) Trigonometric Seasonality, Box–Cox Transformation, ARMA Errors, Trend and Seasonal Components (TBATS), (5) Seasonal Neural Network Autoregression (Seasonal NNAR), and (6) Seasonal NNAR with an external regressor (seasonal naïve forecast of the inflation-adjusted ADR) are employed. Forecast evaluation is carried out for forecast horizons h = 1, 7, 30, and 90 days ahead based on rolling windows. After conducting forecast encompassing tests, (a) mean, (b) median, (c) regression-based weights, (d) Bates–Granger weights, and (e) Bates–Granger ranks are used as forecast combination techniques. In the relative majority of cases (i.e., in 13 of 28), combined forecasts based on Bates–Granger weights and on Bates–Granger ranks provide the highest level of forecast accuracy in terms of typical measures. Finally, the employed methodology represents a fully replicable toolkit for practitioners in terms of both forecast models and forecast combination techniques." @default.
- W3215545852 created "2021-12-06" @default.
- W3215545852 creator A5075965086 @default.
- W3215545852 date "2021-11-27" @default.
- W3215545852 modified "2023-09-26" @default.
- W3215545852 title "Improving Hotel Room Demand Forecasts for Vienna across Hotel Classes and Forecast Horizons: Single Models and Combination Techniques Based on Encompassing Tests" @default.
- W3215545852 cites W1597391104 @default.
- W3215545852 cites W1605276600 @default.
- W3215545852 cites W1967178021 @default.
- W3215545852 cites W1968975103 @default.
- W3215545852 cites W1979655081 @default.
- W3215545852 cites W1986528915 @default.
- W3215545852 cites W1998718871 @default.
- W3215545852 cites W2003142643 @default.
- W3215545852 cites W2005690018 @default.
- W3215545852 cites W2006746888 @default.
- W3215545852 cites W2016210396 @default.
- W3215545852 cites W2018285446 @default.
- W3215545852 cites W2025391890 @default.
- W3215545852 cites W2034159772 @default.
- W3215545852 cites W2034430502 @default.
- W3215545852 cites W2036151558 @default.
- W3215545852 cites W2038642139 @default.
- W3215545852 cites W2044875104 @default.
- W3215545852 cites W2047196406 @default.
- W3215545852 cites W2057182962 @default.
- W3215545852 cites W2062591844 @default.
- W3215545852 cites W2064675550 @default.
- W3215545852 cites W2068424727 @default.
- W3215545852 cites W2068727222 @default.
- W3215545852 cites W2080428127 @default.
- W3215545852 cites W2083801165 @default.
- W3215545852 cites W2107802088 @default.
- W3215545852 cites W2108731026 @default.
- W3215545852 cites W2109316012 @default.
- W3215545852 cites W2109826545 @default.
- W3215545852 cites W2128130077 @default.
- W3215545852 cites W2130778342 @default.
- W3215545852 cites W2132615746 @default.
- W3215545852 cites W2141256898 @default.
- W3215545852 cites W2142635246 @default.
- W3215545852 cites W2146525523 @default.
- W3215545852 cites W2152397288 @default.
- W3215545852 cites W2161020850 @default.
- W3215545852 cites W2162174678 @default.
- W3215545852 cites W2162859319 @default.
- W3215545852 cites W2171771747 @default.
- W3215545852 cites W2178225550 @default.
- W3215545852 cites W2263137951 @default.
- W3215545852 cites W2270659678 @default.
- W3215545852 cites W2400339080 @default.
- W3215545852 cites W2497760393 @default.
- W3215545852 cites W2547820680 @default.
- W3215545852 cites W2550244553 @default.
- W3215545852 cites W2584560953 @default.
- W3215545852 cites W2613785310 @default.
- W3215545852 cites W2756473212 @default.
- W3215545852 cites W2771460868 @default.
- W3215545852 cites W2794726811 @default.
- W3215545852 cites W2884741544 @default.
- W3215545852 cites W2887630604 @default.
- W3215545852 cites W2902021342 @default.
- W3215545852 cites W2917249090 @default.
- W3215545852 cites W2939094371 @default.
- W3215545852 cites W2939264787 @default.
- W3215545852 cites W2968235412 @default.
- W3215545852 cites W2970748772 @default.
- W3215545852 cites W2987664148 @default.
- W3215545852 cites W2999886233 @default.
- W3215545852 cites W3006268028 @default.
- W3215545852 cites W3021318637 @default.
- W3215545852 cites W3022716520 @default.
- W3215545852 cites W3023590303 @default.
- W3215545852 cites W3047441330 @default.
- W3215545852 cites W3108100274 @default.
- W3215545852 cites W3114729326 @default.
- W3215545852 cites W3121173140 @default.
- W3215545852 cites W3124475746 @default.
- W3215545852 cites W3125613485 @default.
- W3215545852 cites W3126843451 @default.
- W3215545852 cites W3133069929 @default.
- W3215545852 cites W3139511698 @default.
- W3215545852 cites W3144648870 @default.
- W3215545852 cites W3189695481 @default.
- W3215545852 cites W3195582505 @default.
- W3215545852 doi "https://doi.org/10.3390/forecast3040054" @default.
- W3215545852 hasPublicationYear "2021" @default.
- W3215545852 type Work @default.
- W3215545852 sameAs 3215545852 @default.
- W3215545852 citedByCount "6" @default.
- W3215545852 countsByYear W32155458522022 @default.
- W3215545852 countsByYear W32155458522023 @default.
- W3215545852 crossrefType "journal-article" @default.
- W3215545852 hasAuthorship W3215545852A5075965086 @default.
- W3215545852 hasBestOaLocation W32155458521 @default.
- W3215545852 hasConcept C105795698 @default.
- W3215545852 hasConcept C125403950 @default.
- W3215545852 hasConcept C127313418 @default.