Matches in SemOpenAlex for { <https://semopenalex.org/work/W3215546032> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W3215546032 endingPage "104550" @default.
- W3215546032 startingPage "104550" @default.
- W3215546032 abstract "As an excellent discriminant classifier based on generating prior knowledge, the minimax probability machine (MPM) has been widely used and deeply researched in many fields. The core idea of minimax probability machine is to directly estimate probability accuracy bound by minimizing the maximum probability of misclassification. However, minimax probability machine does not include a regularization term for the construction of the separating hyperplane, and it needs to solve a large-scale second-order cone programming problem in the solution process, which greatly limits it development and application. In this paper, to improve the performance of minimax probability machine, we propose a novel binary classification method called regularized twin minimax probability machine classification (TMPMC). The TMPMC constructs two non-parallel hyperplanes for final classification by solving two smaller second-order cone programming problems to improve the performance of the MPM. For each hyperplane, our method is theoretically well grounded on the idea of minimizing the worst case (maximum) probability of misclassification of a class of samples while the distance to the other class is as large as possible. Our approach was first derived as linear methods, and subsequently extended as kernel-based strategies for nonlinear classification. Additionally, we extend TMPMC to the regression problem and propose a new regularized twin minimax probability machine regression (TMPMR). Experimental results on several datasets show that our methods are competitive in terms of generalization performance compared to other algorithms." @default.
- W3215546032 created "2021-12-06" @default.
- W3215546032 creator A5071376438 @default.
- W3215546032 creator A5076538595 @default.
- W3215546032 date "2022-01-01" @default.
- W3215546032 modified "2023-09-23" @default.
- W3215546032 title "Regularized twin minimax probability machine for pattern classification and regression" @default.
- W3215546032 cites W1601759650 @default.
- W3215546032 cites W1967073510 @default.
- W3215546032 cites W1972284617 @default.
- W3215546032 cites W1973560868 @default.
- W3215546032 cites W1978738590 @default.
- W3215546032 cites W1996932677 @default.
- W3215546032 cites W2006996664 @default.
- W3215546032 cites W2009923109 @default.
- W3215546032 cites W2022686787 @default.
- W3215546032 cites W2090089568 @default.
- W3215546032 cites W2133537675 @default.
- W3215546032 cites W2170860445 @default.
- W3215546032 cites W2258632097 @default.
- W3215546032 cites W2262800968 @default.
- W3215546032 cites W2275790232 @default.
- W3215546032 cites W2336484677 @default.
- W3215546032 cites W2398821504 @default.
- W3215546032 cites W2584597132 @default.
- W3215546032 cites W2604504584 @default.
- W3215546032 cites W2795540310 @default.
- W3215546032 cites W2802777019 @default.
- W3215546032 cites W2806416578 @default.
- W3215546032 cites W2912088361 @default.
- W3215546032 cites W2924501502 @default.
- W3215546032 cites W2940923056 @default.
- W3215546032 cites W2999288088 @default.
- W3215546032 cites W4239510810 @default.
- W3215546032 doi "https://doi.org/10.1016/j.engappai.2021.104550" @default.
- W3215546032 hasPublicationYear "2022" @default.
- W3215546032 type Work @default.
- W3215546032 sameAs 3215546032 @default.
- W3215546032 citedByCount "3" @default.
- W3215546032 countsByYear W32155460322022 @default.
- W3215546032 crossrefType "journal-article" @default.
- W3215546032 hasAuthorship W3215546032A5071376438 @default.
- W3215546032 hasAuthorship W3215546032A5076538595 @default.
- W3215546032 hasConcept C11413529 @default.
- W3215546032 hasConcept C119857082 @default.
- W3215546032 hasConcept C12267149 @default.
- W3215546032 hasConcept C126255220 @default.
- W3215546032 hasConcept C149728462 @default.
- W3215546032 hasConcept C154945302 @default.
- W3215546032 hasConcept C2524010 @default.
- W3215546032 hasConcept C33923547 @default.
- W3215546032 hasConcept C41008148 @default.
- W3215546032 hasConcept C68693459 @default.
- W3215546032 hasConcept C69738355 @default.
- W3215546032 hasConcept C95623464 @default.
- W3215546032 hasConceptScore W3215546032C11413529 @default.
- W3215546032 hasConceptScore W3215546032C119857082 @default.
- W3215546032 hasConceptScore W3215546032C12267149 @default.
- W3215546032 hasConceptScore W3215546032C126255220 @default.
- W3215546032 hasConceptScore W3215546032C149728462 @default.
- W3215546032 hasConceptScore W3215546032C154945302 @default.
- W3215546032 hasConceptScore W3215546032C2524010 @default.
- W3215546032 hasConceptScore W3215546032C33923547 @default.
- W3215546032 hasConceptScore W3215546032C41008148 @default.
- W3215546032 hasConceptScore W3215546032C68693459 @default.
- W3215546032 hasConceptScore W3215546032C69738355 @default.
- W3215546032 hasConceptScore W3215546032C95623464 @default.
- W3215546032 hasLocation W32155460321 @default.
- W3215546032 hasOpenAccess W3215546032 @default.
- W3215546032 hasPrimaryLocation W32155460321 @default.
- W3215546032 hasRelatedWork W2026297137 @default.
- W3215546032 hasRelatedWork W2293477903 @default.
- W3215546032 hasRelatedWork W2382794601 @default.
- W3215546032 hasRelatedWork W2779764073 @default.
- W3215546032 hasRelatedWork W2937631562 @default.
- W3215546032 hasRelatedWork W2961085424 @default.
- W3215546032 hasRelatedWork W3194539120 @default.
- W3215546032 hasRelatedWork W4205958290 @default.
- W3215546032 hasRelatedWork W4310030236 @default.
- W3215546032 hasRelatedWork W4361795583 @default.
- W3215546032 hasVolume "107" @default.
- W3215546032 isParatext "false" @default.
- W3215546032 isRetracted "false" @default.
- W3215546032 magId "3215546032" @default.
- W3215546032 workType "article" @default.