Matches in SemOpenAlex for { <https://semopenalex.org/work/W3215575931> ?p ?o ?g. }
- W3215575931 endingPage "10448" @default.
- W3215575931 startingPage "10429" @default.
- W3215575931 abstract "Abstract Melanoma is one of the main causes of cancer-related deaths. The development of new computational methods as an important tool for assisting doctors can lead to early diagnosis and effectively reduce mortality. In this work, we propose a convolutional neural network architecture for melanoma diagnosis inspired by ensemble learning and genetic algorithms. The architecture is designed by a genetic algorithm that finds optimal members of the ensemble. Additionally, the abstract features of all models are merged and, as a result, additional prediction capabilities are obtained. The diagnosis is achieved by combining all individual predictions. In this manner, the training process is implicitly regularized, showing better convergence, mitigating the overfitting of the model, and improving the generalization performance. The aim is to find the models that best contribute to the ensemble. The proposed approach also leverages data augmentation, transfer learning, and a segmentation algorithm. The segmentation can be performed without training and with a central processing unit, thus avoiding a significant amount of computational power, while maintaining its competitive performance. To evaluate the proposal, an extensive experimental study was conducted on sixteen skin image datasets, where state-of-the-art models were significantly outperformed. This study corroborated that genetic algorithms can be employed to effectively find suitable architectures for the diagnosis of melanoma, achieving in overall 11% and 13% better prediction performances compared to the closest model in dermoscopic and non-dermoscopic images, respectively. Finally, the proposal was implemented in a web application in order to assist dermatologists and it can be consulted at http://skinensemble.com ." @default.
- W3215575931 created "2021-12-06" @default.
- W3215575931 creator A5002562252 @default.
- W3215575931 creator A5073946143 @default.
- W3215575931 date "2021-11-19" @default.
- W3215575931 modified "2023-09-27" @default.
- W3215575931 title "An ensemble-based convolutional neural network model powered by a genetic algorithm for melanoma diagnosis" @default.
- W3215575931 cites W1480009832 @default.
- W3215575931 cites W1534477342 @default.
- W3215575931 cites W1559956479 @default.
- W3215575931 cites W1564372824 @default.
- W3215575931 cites W1580269359 @default.
- W3215575931 cites W1593727536 @default.
- W3215575931 cites W1901129140 @default.
- W3215575931 cites W1968122399 @default.
- W3215575931 cites W1987971958 @default.
- W3215575931 cites W2001378671 @default.
- W3215575931 cites W2002507614 @default.
- W3215575931 cites W2016053056 @default.
- W3215575931 cites W2016944307 @default.
- W3215575931 cites W2018948100 @default.
- W3215575931 cites W2025126377 @default.
- W3215575931 cites W2036714085 @default.
- W3215575931 cites W2061253660 @default.
- W3215575931 cites W2097117768 @default.
- W3215575931 cites W2100470251 @default.
- W3215575931 cites W2109255472 @default.
- W3215575931 cites W2114487471 @default.
- W3215575931 cites W2132424367 @default.
- W3215575931 cites W2153393503 @default.
- W3215575931 cites W2155806188 @default.
- W3215575931 cites W2194775991 @default.
- W3215575931 cites W2230521999 @default.
- W3215575931 cites W2253429366 @default.
- W3215575931 cites W2322371438 @default.
- W3215575931 cites W2501369945 @default.
- W3215575931 cites W2519210008 @default.
- W3215575931 cites W2531409750 @default.
- W3215575931 cites W2537189671 @default.
- W3215575931 cites W2559870345 @default.
- W3215575931 cites W2564782580 @default.
- W3215575931 cites W2581082771 @default.
- W3215575931 cites W2593744649 @default.
- W3215575931 cites W2620760558 @default.
- W3215575931 cites W2740144340 @default.
- W3215575931 cites W2752585553 @default.
- W3215575931 cites W2768489488 @default.
- W3215575931 cites W2771104702 @default.
- W3215575931 cites W2793433211 @default.
- W3215575931 cites W2793759634 @default.
- W3215575931 cites W2797514659 @default.
- W3215575931 cites W2797527544 @default.
- W3215575931 cites W2803575519 @default.
- W3215575931 cites W2805067537 @default.
- W3215575931 cites W2873610416 @default.
- W3215575931 cites W2885738414 @default.
- W3215575931 cites W2890655382 @default.
- W3215575931 cites W2899142219 @default.
- W3215575931 cites W2899425762 @default.
- W3215575931 cites W2900722061 @default.
- W3215575931 cites W2912910400 @default.
- W3215575931 cites W2918087949 @default.
- W3215575931 cites W2921785317 @default.
- W3215575931 cites W2923997689 @default.
- W3215575931 cites W2954996726 @default.
- W3215575931 cites W2959113037 @default.
- W3215575931 cites W2963516899 @default.
- W3215575931 cites W2964350391 @default.
- W3215575931 cites W2980090183 @default.
- W3215575931 cites W3005221849 @default.
- W3215575931 cites W3010812223 @default.
- W3215575931 cites W3028737903 @default.
- W3215575931 cites W3093045698 @default.
- W3215575931 cites W3102785203 @default.
- W3215575931 cites W4252684946 @default.
- W3215575931 cites W4300511762 @default.
- W3215575931 doi "https://doi.org/10.1007/s00521-021-06655-7" @default.
- W3215575931 hasPublicationYear "2021" @default.
- W3215575931 type Work @default.
- W3215575931 sameAs 3215575931 @default.
- W3215575931 citedByCount "7" @default.
- W3215575931 countsByYear W32155759312022 @default.
- W3215575931 countsByYear W32155759312023 @default.
- W3215575931 crossrefType "journal-article" @default.
- W3215575931 hasAuthorship W3215575931A5002562252 @default.
- W3215575931 hasAuthorship W3215575931A5073946143 @default.
- W3215575931 hasBestOaLocation W32155759311 @default.
- W3215575931 hasConcept C11413529 @default.
- W3215575931 hasConcept C119857082 @default.
- W3215575931 hasConcept C134306372 @default.
- W3215575931 hasConcept C153180895 @default.
- W3215575931 hasConcept C154945302 @default.
- W3215575931 hasConcept C177148314 @default.
- W3215575931 hasConcept C22019652 @default.
- W3215575931 hasConcept C33923547 @default.
- W3215575931 hasConcept C41008148 @default.
- W3215575931 hasConcept C45942800 @default.
- W3215575931 hasConcept C50644808 @default.