Matches in SemOpenAlex for { <https://semopenalex.org/work/W3215629042> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W3215629042 endingPage "101929" @default.
- W3215629042 startingPage "101929" @default.
- W3215629042 abstract "Data science requires the creation of complex data ecosystems to support data analysis, which we refer to as data-based information systems (DBIS). The diversity of techniques to manage and analyse data has contributed to a wide variety of DBIS. On the one hand, current data management solutions span classical relational databases, distributed (relational and non-relational) systems, document-oriented databases, column stores, in-memory databases, property and knowledge graph databases, stream processors, scientific databases, etc. On the other hand, data analytics techniques range from classical statistical-based data mining, to machine learning, process-oriented data analysis, stream and complex event processing, graph analytics, etc. On top of that, hardware-accelerated solutions, specially related to deep learning and CPU-intensive analytical solutions are complicating the big picture. Nowadays, a prominent research trend is to devise specific data management techniques to accelerate and improve the overall throughput and answer time of DBIS. DOLAP, the International Workshop On Design, Optimization, Languages and Analytical Processing of Big Data , has become a reference discussion forum where to witness the current advances in data management for modern data analytics needs. We summarize the advances presented in DOLAP 2020 and the best papers selected for the DOLAP 2020 Information Systems Special Issue." @default.
- W3215629042 created "2021-12-06" @default.
- W3215629042 creator A5015313855 @default.
- W3215629042 creator A5067437365 @default.
- W3215629042 creator A5067693515 @default.
- W3215629042 date "2022-02-01" @default.
- W3215629042 modified "2023-09-24" @default.
- W3215629042 title "Trends in Design, Optimization, Languages, and Analytical Processing of Big Data (DOLAP 2020)" @default.
- W3215629042 doi "https://doi.org/10.1016/j.is.2021.101929" @default.
- W3215629042 hasPublicationYear "2022" @default.
- W3215629042 type Work @default.
- W3215629042 sameAs 3215629042 @default.
- W3215629042 citedByCount "1" @default.
- W3215629042 countsByYear W32156290422022 @default.
- W3215629042 crossrefType "journal-article" @default.
- W3215629042 hasAuthorship W3215629042A5015313855 @default.
- W3215629042 hasAuthorship W3215629042A5067437365 @default.
- W3215629042 hasAuthorship W3215629042A5067693515 @default.
- W3215629042 hasConcept C107027933 @default.
- W3215629042 hasConcept C111919701 @default.
- W3215629042 hasConcept C120314980 @default.
- W3215629042 hasConcept C123606473 @default.
- W3215629042 hasConcept C124101348 @default.
- W3215629042 hasConcept C1668388 @default.
- W3215629042 hasConcept C175801342 @default.
- W3215629042 hasConcept C2522767166 @default.
- W3215629042 hasConcept C41008148 @default.
- W3215629042 hasConcept C5655090 @default.
- W3215629042 hasConcept C75684735 @default.
- W3215629042 hasConcept C79158427 @default.
- W3215629042 hasConcept C89198739 @default.
- W3215629042 hasConcept C98045186 @default.
- W3215629042 hasConceptScore W3215629042C107027933 @default.
- W3215629042 hasConceptScore W3215629042C111919701 @default.
- W3215629042 hasConceptScore W3215629042C120314980 @default.
- W3215629042 hasConceptScore W3215629042C123606473 @default.
- W3215629042 hasConceptScore W3215629042C124101348 @default.
- W3215629042 hasConceptScore W3215629042C1668388 @default.
- W3215629042 hasConceptScore W3215629042C175801342 @default.
- W3215629042 hasConceptScore W3215629042C2522767166 @default.
- W3215629042 hasConceptScore W3215629042C41008148 @default.
- W3215629042 hasConceptScore W3215629042C5655090 @default.
- W3215629042 hasConceptScore W3215629042C75684735 @default.
- W3215629042 hasConceptScore W3215629042C79158427 @default.
- W3215629042 hasConceptScore W3215629042C89198739 @default.
- W3215629042 hasConceptScore W3215629042C98045186 @default.
- W3215629042 hasLocation W32156290421 @default.
- W3215629042 hasOpenAccess W3215629042 @default.
- W3215629042 hasPrimaryLocation W32156290421 @default.
- W3215629042 hasRelatedWork W2089786149 @default.
- W3215629042 hasRelatedWork W2479054499 @default.
- W3215629042 hasRelatedWork W2530162595 @default.
- W3215629042 hasRelatedWork W2530284307 @default.
- W3215629042 hasRelatedWork W2795096181 @default.
- W3215629042 hasRelatedWork W3113817755 @default.
- W3215629042 hasRelatedWork W3172092182 @default.
- W3215629042 hasRelatedWork W3215629042 @default.
- W3215629042 hasRelatedWork W4241100870 @default.
- W3215629042 hasRelatedWork W4294378653 @default.
- W3215629042 hasVolume "104" @default.
- W3215629042 isParatext "false" @default.
- W3215629042 isRetracted "false" @default.
- W3215629042 magId "3215629042" @default.
- W3215629042 workType "article" @default.