Matches in SemOpenAlex for { <https://semopenalex.org/work/W3215636574> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W3215636574 abstract "Electrocardiogram(ECG) is an important method to investigate heart diseases. ECG remains one of the main investigations by current medical standards, playing an important role in decision making for treating cardiac patients. Current ECG medical devices record 12 one-dimensional electrical signal channels to create a 3D map of the heart electrical activity. The modern ECG machines also offer physicians an automatic medical interpretation of the ECG based on measurement of the signal waves and waves intervals: PR, QRS, ST and T wave interval. We propose a novel computer assisted ECG interpretation method based on ID convolutional deep neural networks. This method is based on combining different types of neural networks layers: ID convolutional, Dense, Dropout, Flatten, MaxPooling. By using real electrocardiogram Data(having multiple types of real electrocardiogram data) from ECG recording we were able to improve the accuracy of the overall classification of our best deep neural network and this led to a better predictions of our deep neural network model. Our final results were promising, and we plan to further develop a system that can classify the electrocardiogram of a patient for current use in a hospital." @default.
- W3215636574 created "2021-12-06" @default.
- W3215636574 creator A5011539659 @default.
- W3215636574 creator A5064120532 @default.
- W3215636574 creator A5083139548 @default.
- W3215636574 creator A5088242715 @default.
- W3215636574 creator A5089037379 @default.
- W3215636574 date "2021-10-20" @default.
- W3215636574 modified "2023-10-16" @default.
- W3215636574 title "Comparing two different types of deep neural networks to improve accuracy in ECG intepretation" @default.
- W3215636574 cites W2064675550 @default.
- W3215636574 cites W2076396344 @default.
- W3215636574 cites W2077562320 @default.
- W3215636574 cites W2141007997 @default.
- W3215636574 cites W2727650337 @default.
- W3215636574 cites W2731010577 @default.
- W3215636574 cites W2775229114 @default.
- W3215636574 cites W2795119243 @default.
- W3215636574 cites W3012684726 @default.
- W3215636574 cites W3015494572 @default.
- W3215636574 cites W3099074725 @default.
- W3215636574 cites W3127640593 @default.
- W3215636574 cites W3177131571 @default.
- W3215636574 doi "https://doi.org/10.1109/icstcc52150.2021.9607110" @default.
- W3215636574 hasPublicationYear "2021" @default.
- W3215636574 type Work @default.
- W3215636574 sameAs 3215636574 @default.
- W3215636574 citedByCount "1" @default.
- W3215636574 countsByYear W32156365742023 @default.
- W3215636574 crossrefType "proceedings-article" @default.
- W3215636574 hasAuthorship W3215636574A5011539659 @default.
- W3215636574 hasAuthorship W3215636574A5064120532 @default.
- W3215636574 hasAuthorship W3215636574A5083139548 @default.
- W3215636574 hasAuthorship W3215636574A5088242715 @default.
- W3215636574 hasAuthorship W3215636574A5089037379 @default.
- W3215636574 hasConcept C108583219 @default.
- W3215636574 hasConcept C111773187 @default.
- W3215636574 hasConcept C119857082 @default.
- W3215636574 hasConcept C124101348 @default.
- W3215636574 hasConcept C153180895 @default.
- W3215636574 hasConcept C154945302 @default.
- W3215636574 hasConcept C164705383 @default.
- W3215636574 hasConcept C199360897 @default.
- W3215636574 hasConcept C2776145597 @default.
- W3215636574 hasConcept C2779843651 @default.
- W3215636574 hasConcept C2780040984 @default.
- W3215636574 hasConcept C41008148 @default.
- W3215636574 hasConcept C50644808 @default.
- W3215636574 hasConcept C71924100 @default.
- W3215636574 hasConcept C81363708 @default.
- W3215636574 hasConceptScore W3215636574C108583219 @default.
- W3215636574 hasConceptScore W3215636574C111773187 @default.
- W3215636574 hasConceptScore W3215636574C119857082 @default.
- W3215636574 hasConceptScore W3215636574C124101348 @default.
- W3215636574 hasConceptScore W3215636574C153180895 @default.
- W3215636574 hasConceptScore W3215636574C154945302 @default.
- W3215636574 hasConceptScore W3215636574C164705383 @default.
- W3215636574 hasConceptScore W3215636574C199360897 @default.
- W3215636574 hasConceptScore W3215636574C2776145597 @default.
- W3215636574 hasConceptScore W3215636574C2779843651 @default.
- W3215636574 hasConceptScore W3215636574C2780040984 @default.
- W3215636574 hasConceptScore W3215636574C41008148 @default.
- W3215636574 hasConceptScore W3215636574C50644808 @default.
- W3215636574 hasConceptScore W3215636574C71924100 @default.
- W3215636574 hasConceptScore W3215636574C81363708 @default.
- W3215636574 hasLocation W32156365741 @default.
- W3215636574 hasOpenAccess W3215636574 @default.
- W3215636574 hasPrimaryLocation W32156365741 @default.
- W3215636574 hasRelatedWork W2337926734 @default.
- W3215636574 hasRelatedWork W2732542196 @default.
- W3215636574 hasRelatedWork W2758063741 @default.
- W3215636574 hasRelatedWork W3038657813 @default.
- W3215636574 hasRelatedWork W3136076031 @default.
- W3215636574 hasRelatedWork W4281780675 @default.
- W3215636574 hasRelatedWork W4285586943 @default.
- W3215636574 hasRelatedWork W4287776258 @default.
- W3215636574 hasRelatedWork W564581980 @default.
- W3215636574 hasRelatedWork W3009789068 @default.
- W3215636574 isParatext "false" @default.
- W3215636574 isRetracted "false" @default.
- W3215636574 magId "3215636574" @default.
- W3215636574 workType "article" @default.