Matches in SemOpenAlex for { <https://semopenalex.org/work/W3215663445> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W3215663445 abstract "Point cloud data classification has been widely used in autonomous driving, robot perception, and virtual/augmented reality. Due to its irregularity and disorder, the classification task of point clouds needs to transform the point cloud into a multi-view or voxel grid, and then use the traditional convolution neural network processing. However, this process is not only complex in operation but also low in classification accuracy. To solve this problem, a new point cloud classification method based on the graphical convolutional neural network (GCN) is proposed. Firstly, based on PointNet, KNN graph is introduced to obtain global deep features. Then the 3D point cloud is represented as a directed graph, local features are extracted by edge convolution. Finally, the extracted global and local features are aggregated to represent and classify point clouds. The proposed network is evaluated on the open dataset ModelNet40 and 3DMNIST. Experimental results show that the proposed network can achieve on par or better performance than state-of-the-art, such as PointNet, PointNet++, DGCNN, and PointCNN, for point cloud classification." @default.
- W3215663445 created "2021-12-06" @default.
- W3215663445 creator A5011423838 @default.
- W3215663445 creator A5011866398 @default.
- W3215663445 creator A5086664647 @default.
- W3215663445 date "2021-05-22" @default.
- W3215663445 modified "2023-10-18" @default.
- W3215663445 title "A Graphical Convolutional Network-based Method for 3D Point Cloud Classification" @default.
- W3215663445 cites W2211722331 @default.
- W3215663445 cites W2484602963 @default.
- W3215663445 cites W2515247129 @default.
- W3215663445 cites W2603429625 @default.
- W3215663445 cites W2609719703 @default.
- W3215663445 cites W2776622059 @default.
- W3215663445 cites W2893477965 @default.
- W3215663445 cites W2962928871 @default.
- W3215663445 cites W2963719584 @default.
- W3215663445 cites W2964342398 @default.
- W3215663445 cites W2968370607 @default.
- W3215663445 cites W2979750740 @default.
- W3215663445 cites W3014629154 @default.
- W3215663445 cites W3033716780 @default.
- W3215663445 doi "https://doi.org/10.1109/ccdc52312.2021.9601582" @default.
- W3215663445 hasPublicationYear "2021" @default.
- W3215663445 type Work @default.
- W3215663445 sameAs 3215663445 @default.
- W3215663445 citedByCount "1" @default.
- W3215663445 countsByYear W32156634452022 @default.
- W3215663445 crossrefType "proceedings-article" @default.
- W3215663445 hasAuthorship W3215663445A5011423838 @default.
- W3215663445 hasAuthorship W3215663445A5011866398 @default.
- W3215663445 hasAuthorship W3215663445A5086664647 @default.
- W3215663445 hasConcept C111919701 @default.
- W3215663445 hasConcept C124101348 @default.
- W3215663445 hasConcept C131979681 @default.
- W3215663445 hasConcept C132525143 @default.
- W3215663445 hasConcept C153180895 @default.
- W3215663445 hasConcept C154945302 @default.
- W3215663445 hasConcept C41008148 @default.
- W3215663445 hasConcept C45347329 @default.
- W3215663445 hasConcept C50644808 @default.
- W3215663445 hasConcept C79974875 @default.
- W3215663445 hasConcept C80444323 @default.
- W3215663445 hasConcept C81363708 @default.
- W3215663445 hasConceptScore W3215663445C111919701 @default.
- W3215663445 hasConceptScore W3215663445C124101348 @default.
- W3215663445 hasConceptScore W3215663445C131979681 @default.
- W3215663445 hasConceptScore W3215663445C132525143 @default.
- W3215663445 hasConceptScore W3215663445C153180895 @default.
- W3215663445 hasConceptScore W3215663445C154945302 @default.
- W3215663445 hasConceptScore W3215663445C41008148 @default.
- W3215663445 hasConceptScore W3215663445C45347329 @default.
- W3215663445 hasConceptScore W3215663445C50644808 @default.
- W3215663445 hasConceptScore W3215663445C79974875 @default.
- W3215663445 hasConceptScore W3215663445C80444323 @default.
- W3215663445 hasConceptScore W3215663445C81363708 @default.
- W3215663445 hasFunder F4320321001 @default.
- W3215663445 hasLocation W32156634451 @default.
- W3215663445 hasOpenAccess W3215663445 @default.
- W3215663445 hasPrimaryLocation W32156634451 @default.
- W3215663445 hasRelatedWork W2175746458 @default.
- W3215663445 hasRelatedWork W2613736958 @default.
- W3215663445 hasRelatedWork W2732542196 @default.
- W3215663445 hasRelatedWork W2738221750 @default.
- W3215663445 hasRelatedWork W2760085659 @default.
- W3215663445 hasRelatedWork W2883200793 @default.
- W3215663445 hasRelatedWork W2912288872 @default.
- W3215663445 hasRelatedWork W3012978760 @default.
- W3215663445 hasRelatedWork W3093612317 @default.
- W3215663445 hasRelatedWork W4312417841 @default.
- W3215663445 isParatext "false" @default.
- W3215663445 isRetracted "false" @default.
- W3215663445 magId "3215663445" @default.
- W3215663445 workType "article" @default.