Matches in SemOpenAlex for { <https://semopenalex.org/work/W3215663900> ?p ?o ?g. }
- W3215663900 endingPage "57213" @default.
- W3215663900 startingPage "57204" @default.
- W3215663900 abstract "In the present work, we used machine learning (ML) techniques to build a crystal-based model that can predict the lattice thermal conductivity (LTC) of crystalline materials. To achieve this, first, LTCs of 119 compounds at various temperatures (100-1000 K) were obtained based on density functional theory (DFT) and phonon calculations, and then, these data were employed in the next learning process to build a predictive model using various ML algorithms. The ML results showed that the model built based on the random forest (RF) algorithm with an R2 score of 0.957 was the most accurate compared with the models built using other algorithms. Additionally, the accuracy of this model was validated using new cases of four compounds, which was not seen for the model before, where a good matching between calculated and predicted LTCs of the new compounds was found. To find candidates with ultralow LTCs (<1 W m-1 K-1) at room temperature, the model was used to screen compounds (32116) in the Inorganic Crystal Structure Database. From the screened compounds, Cs2SnI6 and SrS were selected to validate the ML prediction using the counterpart theoretical calculations (DFT and phonon), and it was found that the outcome behaviors by both methods (ML prediction and DFT/phonon calculations) are fairly consistent. Considering the type of employed feature, the prime novelty in this work is that the built model can credibly predict the LTC-temperature behaviors of new compounds that are constructed based on prototype structures and chemical compositions, without the use of any DFT-relaxed structure parameters. Accordingly, using the periodic table, prototype structures, and the RF-based model, the LTC-temperature behavior of a huge number of compounds can be predicated." @default.
- W3215663900 created "2021-12-06" @default.
- W3215663900 creator A5000286327 @default.
- W3215663900 creator A5054520248 @default.
- W3215663900 creator A5081645104 @default.
- W3215663900 date "2021-11-22" @default.
- W3215663900 modified "2023-09-29" @default.
- W3215663900 title "Lattice Thermal Conductivity: An Accelerated Discovery Guided by Machine Learning" @default.
- W3215663900 cites W1520127302 @default.
- W3215663900 cites W1678356000 @default.
- W3215663900 cites W1826478021 @default.
- W3215663900 cites W1857108988 @default.
- W3215663900 cites W2048231652 @default.
- W3215663900 cites W2098765871 @default.
- W3215663900 cites W2103285346 @default.
- W3215663900 cites W2120145199 @default.
- W3215663900 cites W2121817924 @default.
- W3215663900 cites W2171623125 @default.
- W3215663900 cites W2464725281 @default.
- W3215663900 cites W2734520197 @default.
- W3215663900 cites W2799946470 @default.
- W3215663900 cites W2810856648 @default.
- W3215663900 cites W2883096492 @default.
- W3215663900 cites W2884430236 @default.
- W3215663900 cites W2896327298 @default.
- W3215663900 cites W2911964244 @default.
- W3215663900 cites W2955174464 @default.
- W3215663900 cites W2966527963 @default.
- W3215663900 cites W2984289812 @default.
- W3215663900 cites W3003868415 @default.
- W3215663900 cites W3004711896 @default.
- W3215663900 cites W3014902490 @default.
- W3215663900 cites W3032455581 @default.
- W3215663900 cites W3099030566 @default.
- W3215663900 cites W3102476541 @default.
- W3215663900 cites W3103297736 @default.
- W3215663900 cites W3109103107 @default.
- W3215663900 cites W3146265940 @default.
- W3215663900 cites W4236137412 @default.
- W3215663900 cites W832976576 @default.
- W3215663900 cites W971766965 @default.
- W3215663900 doi "https://doi.org/10.1021/acsami.1c17378" @default.
- W3215663900 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34806862" @default.
- W3215663900 hasPublicationYear "2021" @default.
- W3215663900 type Work @default.
- W3215663900 sameAs 3215663900 @default.
- W3215663900 citedByCount "22" @default.
- W3215663900 countsByYear W32156639002022 @default.
- W3215663900 countsByYear W32156639002023 @default.
- W3215663900 crossrefType "journal-article" @default.
- W3215663900 hasAuthorship W3215663900A5000286327 @default.
- W3215663900 hasAuthorship W3215663900A5054520248 @default.
- W3215663900 hasAuthorship W3215663900A5081645104 @default.
- W3215663900 hasConcept C11413529 @default.
- W3215663900 hasConcept C115624301 @default.
- W3215663900 hasConcept C119857082 @default.
- W3215663900 hasConcept C121332964 @default.
- W3215663900 hasConcept C121864883 @default.
- W3215663900 hasConcept C147597530 @default.
- W3215663900 hasConcept C152365726 @default.
- W3215663900 hasConcept C154945302 @default.
- W3215663900 hasConcept C159985019 @default.
- W3215663900 hasConcept C169258074 @default.
- W3215663900 hasConcept C185592680 @default.
- W3215663900 hasConcept C192562407 @default.
- W3215663900 hasConcept C24169881 @default.
- W3215663900 hasConcept C24890656 @default.
- W3215663900 hasConcept C26873012 @default.
- W3215663900 hasConcept C2781204021 @default.
- W3215663900 hasConcept C41008148 @default.
- W3215663900 hasConcept C8010536 @default.
- W3215663900 hasConcept C84947059 @default.
- W3215663900 hasConcept C97346530 @default.
- W3215663900 hasConceptScore W3215663900C11413529 @default.
- W3215663900 hasConceptScore W3215663900C115624301 @default.
- W3215663900 hasConceptScore W3215663900C119857082 @default.
- W3215663900 hasConceptScore W3215663900C121332964 @default.
- W3215663900 hasConceptScore W3215663900C121864883 @default.
- W3215663900 hasConceptScore W3215663900C147597530 @default.
- W3215663900 hasConceptScore W3215663900C152365726 @default.
- W3215663900 hasConceptScore W3215663900C154945302 @default.
- W3215663900 hasConceptScore W3215663900C159985019 @default.
- W3215663900 hasConceptScore W3215663900C169258074 @default.
- W3215663900 hasConceptScore W3215663900C185592680 @default.
- W3215663900 hasConceptScore W3215663900C192562407 @default.
- W3215663900 hasConceptScore W3215663900C24169881 @default.
- W3215663900 hasConceptScore W3215663900C24890656 @default.
- W3215663900 hasConceptScore W3215663900C26873012 @default.
- W3215663900 hasConceptScore W3215663900C2781204021 @default.
- W3215663900 hasConceptScore W3215663900C41008148 @default.
- W3215663900 hasConceptScore W3215663900C8010536 @default.
- W3215663900 hasConceptScore W3215663900C84947059 @default.
- W3215663900 hasConceptScore W3215663900C97346530 @default.
- W3215663900 hasFunder F4320322120 @default.
- W3215663900 hasIssue "48" @default.
- W3215663900 hasLocation W32156639001 @default.
- W3215663900 hasLocation W32156639002 @default.
- W3215663900 hasOpenAccess W3215663900 @default.