Matches in SemOpenAlex for { <https://semopenalex.org/work/W3215670098> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W3215670098 endingPage "e736" @default.
- W3215670098 startingPage "e736" @default.
- W3215670098 abstract "Facial Expression Recognition (FER) has gained considerable attention in affective computing due to its vast area of applications. Diverse approaches and methods have been considered for a robust FER in the field, but only a few works considered the intensity of emotion embedded in the expression. Even the available studies on expression intensity estimation successfully assigned a nominal/regression value or classified emotion in a range of intervals. Most of the available works on facial expression intensity estimation successfully present only the emotion intensity estimation. At the same time, others proposed methods that predict emotion and its intensity in different channels. These multiclass approaches and extensions do not conform to man heuristic manner of recognising emotion and its intensity estimation. This work presents a Multilabel Convolution Neural Network (ML-CNN)-based model, which could simultaneously recognise emotion and provide ordinal metrics as the intensity estimation of the emotion. The proposed ML-CNN is enhanced with the aggregation of Binary Cross-Entropy (BCE) loss and Island Loss (IL) functions to minimise intraclass and interclass variations. Also, ML-CNN model is pre-trained with Visual Geometric Group (VGG-16) to control overfitting. In the experiments conducted on Binghampton University 3D Facial Expression (BU-3DFE) and Cohn Kanade extension (CK+) datasets, we evaluate ML-CNN's performance based on accuracy and loss. We also carried out a comparative study of our model with some popularly used multilabel algorithms using standard multilabel metrics. ML-CNN model simultaneously predicts emotion and intensity estimation using ordinal metrics. The model also shows appreciable and superior performance over four standard multilabel algorithms: Chain Classifier (CC), distinct Random K label set (RAKEL), Multilabel K Nearest Neighbour (MLKNN) and Multilabel ARAM (MLARAM)." @default.
- W3215670098 created "2021-12-06" @default.
- W3215670098 creator A5033750363 @default.
- W3215670098 creator A5054315649 @default.
- W3215670098 date "2021-11-29" @default.
- W3215670098 modified "2023-09-23" @default.
- W3215670098 title "Multilabel convolution neural network for facial expression recognition and ordinal intensity estimation" @default.
- W3215670098 cites W1524416683 @default.
- W3215670098 cites W1661563386 @default.
- W3215670098 cites W1903399393 @default.
- W3215670098 cites W1986159170 @default.
- W3215670098 cites W1999142075 @default.
- W3215670098 cites W2003238582 @default.
- W3215670098 cites W2025216571 @default.
- W3215670098 cites W2052684427 @default.
- W3215670098 cites W2082209919 @default.
- W3215670098 cites W2083261714 @default.
- W3215670098 cites W2138290126 @default.
- W3215670098 cites W2140623345 @default.
- W3215670098 cites W2173331897 @default.
- W3215670098 cites W2364221285 @default.
- W3215670098 cites W2411315559 @default.
- W3215670098 cites W2564755587 @default.
- W3215670098 cites W2605004836 @default.
- W3215670098 cites W2745497104 @default.
- W3215670098 cites W2799041689 @default.
- W3215670098 cites W2805755230 @default.
- W3215670098 cites W2807704035 @default.
- W3215670098 cites W2889978276 @default.
- W3215670098 cites W2943927047 @default.
- W3215670098 cites W2963092169 @default.
- W3215670098 cites W2982126231 @default.
- W3215670098 cites W2982383280 @default.
- W3215670098 cites W3036674531 @default.
- W3215670098 cites W3037047533 @default.
- W3215670098 cites W3042823408 @default.
- W3215670098 cites W3046670506 @default.
- W3215670098 cites W3097140183 @default.
- W3215670098 cites W3103152812 @default.
- W3215670098 cites W3118974738 @default.
- W3215670098 cites W3160705766 @default.
- W3215670098 cites W4235109248 @default.
- W3215670098 doi "https://doi.org/10.7717/peerj-cs.736" @default.
- W3215670098 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34909462" @default.
- W3215670098 hasPublicationYear "2021" @default.
- W3215670098 type Work @default.
- W3215670098 sameAs 3215670098 @default.
- W3215670098 citedByCount "2" @default.
- W3215670098 countsByYear W32156700982022 @default.
- W3215670098 countsByYear W32156700982023 @default.
- W3215670098 crossrefType "journal-article" @default.
- W3215670098 hasAuthorship W3215670098A5033750363 @default.
- W3215670098 hasAuthorship W3215670098A5054315649 @default.
- W3215670098 hasBestOaLocation W32156700981 @default.
- W3215670098 hasConcept C119857082 @default.
- W3215670098 hasConcept C153180895 @default.
- W3215670098 hasConcept C154945302 @default.
- W3215670098 hasConcept C195704467 @default.
- W3215670098 hasConcept C199360897 @default.
- W3215670098 hasConcept C206310091 @default.
- W3215670098 hasConcept C22019652 @default.
- W3215670098 hasConcept C41008148 @default.
- W3215670098 hasConcept C50644808 @default.
- W3215670098 hasConcept C81363708 @default.
- W3215670098 hasConcept C90559484 @default.
- W3215670098 hasConceptScore W3215670098C119857082 @default.
- W3215670098 hasConceptScore W3215670098C153180895 @default.
- W3215670098 hasConceptScore W3215670098C154945302 @default.
- W3215670098 hasConceptScore W3215670098C195704467 @default.
- W3215670098 hasConceptScore W3215670098C199360897 @default.
- W3215670098 hasConceptScore W3215670098C206310091 @default.
- W3215670098 hasConceptScore W3215670098C22019652 @default.
- W3215670098 hasConceptScore W3215670098C41008148 @default.
- W3215670098 hasConceptScore W3215670098C50644808 @default.
- W3215670098 hasConceptScore W3215670098C81363708 @default.
- W3215670098 hasConceptScore W3215670098C90559484 @default.
- W3215670098 hasLocation W32156700981 @default.
- W3215670098 hasLocation W32156700982 @default.
- W3215670098 hasLocation W32156700983 @default.
- W3215670098 hasOpenAccess W3215670098 @default.
- W3215670098 hasPrimaryLocation W32156700981 @default.
- W3215670098 hasRelatedWork W2767651786 @default.
- W3215670098 hasRelatedWork W2989932438 @default.
- W3215670098 hasRelatedWork W3012393889 @default.
- W3215670098 hasRelatedWork W3081496756 @default.
- W3215670098 hasRelatedWork W3099765033 @default.
- W3215670098 hasRelatedWork W3127819136 @default.
- W3215670098 hasRelatedWork W3152769016 @default.
- W3215670098 hasRelatedWork W3180630304 @default.
- W3215670098 hasRelatedWork W3186847174 @default.
- W3215670098 hasRelatedWork W4210794429 @default.
- W3215670098 hasVolume "7" @default.
- W3215670098 isParatext "false" @default.
- W3215670098 isRetracted "false" @default.
- W3215670098 magId "3215670098" @default.
- W3215670098 workType "article" @default.