Matches in SemOpenAlex for { <https://semopenalex.org/work/W3215682947> ?p ?o ?g. }
- W3215682947 endingPage "111638" @default.
- W3215682947 startingPage "111638" @default.
- W3215682947 abstract "Electron Backscattering Diffraction (EBSD) provides important information to discriminate phase transformation products in steels. This task is conventionally performed by an expert, who carries a high degree of subjectivity and requires time and effort. In this paper, we question if Convolutional Neural Networks (CNNs) are able to extract meaningful features from EBSD-based data in order to automatically classify the present phases within a steel microstructure. The selected case of study is ferrite-martensite discrimination and U-Net has been selected as the network architecture to work with. Pixel-wise accuracies around ~95% have been obtained when inputting raw orientation data, while ~98% has been reached with orientation-derived parameters such as Kernel Average Misorientation (KAM) or pattern quality. Compared to other available approaches in the literature for phase discrimination, the models presented here provided higher accuracies in shorter times. These promising results open a possibility to work on more complex steel microstructures." @default.
- W3215682947 created "2021-12-06" @default.
- W3215682947 creator A5007590872 @default.
- W3215682947 creator A5051605145 @default.
- W3215682947 creator A5053256372 @default.
- W3215682947 creator A5066022192 @default.
- W3215682947 creator A5067388205 @default.
- W3215682947 creator A5080330869 @default.
- W3215682947 date "2022-02-01" @default.
- W3215682947 modified "2023-10-06" @default.
- W3215682947 title "Deep Learning for automated phase segmentation in EBSD maps. A case study in Dual Phase steel microstructures" @default.
- W3215682947 cites W1482085336 @default.
- W3215682947 cites W1970606638 @default.
- W3215682947 cites W1985823020 @default.
- W3215682947 cites W1996549880 @default.
- W3215682947 cites W1997415862 @default.
- W3215682947 cites W1998705045 @default.
- W3215682947 cites W2013538482 @default.
- W3215682947 cites W2033155212 @default.
- W3215682947 cites W2035168730 @default.
- W3215682947 cites W2039585685 @default.
- W3215682947 cites W2041474001 @default.
- W3215682947 cites W2061730529 @default.
- W3215682947 cites W2067118720 @default.
- W3215682947 cites W2079260253 @default.
- W3215682947 cites W2080771543 @default.
- W3215682947 cites W2115481008 @default.
- W3215682947 cites W2124834868 @default.
- W3215682947 cites W2147567168 @default.
- W3215682947 cites W2150903702 @default.
- W3215682947 cites W2152014464 @default.
- W3215682947 cites W2153077083 @default.
- W3215682947 cites W2171815854 @default.
- W3215682947 cites W2287844006 @default.
- W3215682947 cites W2601810315 @default.
- W3215682947 cites W2744165068 @default.
- W3215682947 cites W2790954022 @default.
- W3215682947 cites W2910302825 @default.
- W3215682947 cites W2911964244 @default.
- W3215682947 cites W2942537495 @default.
- W3215682947 cites W2958928493 @default.
- W3215682947 cites W2963881378 @default.
- W3215682947 cites W3000584451 @default.
- W3215682947 cites W3024769177 @default.
- W3215682947 cites W3038107239 @default.
- W3215682947 cites W3093632722 @default.
- W3215682947 cites W3094170182 @default.
- W3215682947 cites W3099859964 @default.
- W3215682947 cites W3125832420 @default.
- W3215682947 doi "https://doi.org/10.1016/j.matchar.2021.111638" @default.
- W3215682947 hasPublicationYear "2022" @default.
- W3215682947 type Work @default.
- W3215682947 sameAs 3215682947 @default.
- W3215682947 citedByCount "14" @default.
- W3215682947 countsByYear W32156829472022 @default.
- W3215682947 countsByYear W32156829472023 @default.
- W3215682947 crossrefType "journal-article" @default.
- W3215682947 hasAuthorship W3215682947A5007590872 @default.
- W3215682947 hasAuthorship W3215682947A5051605145 @default.
- W3215682947 hasAuthorship W3215682947A5053256372 @default.
- W3215682947 hasAuthorship W3215682947A5066022192 @default.
- W3215682947 hasAuthorship W3215682947A5067388205 @default.
- W3215682947 hasAuthorship W3215682947A5080330869 @default.
- W3215682947 hasBestOaLocation W32156829472 @default.
- W3215682947 hasConcept C108583219 @default.
- W3215682947 hasConcept C121332964 @default.
- W3215682947 hasConcept C153180895 @default.
- W3215682947 hasConcept C154945302 @default.
- W3215682947 hasConcept C159985019 @default.
- W3215682947 hasConcept C160633673 @default.
- W3215682947 hasConcept C18747287 @default.
- W3215682947 hasConcept C191897082 @default.
- W3215682947 hasConcept C192562407 @default.
- W3215682947 hasConcept C2778117898 @default.
- W3215682947 hasConcept C2779344738 @default.
- W3215682947 hasConcept C27805521 @default.
- W3215682947 hasConcept C37210646 @default.
- W3215682947 hasConcept C41008148 @default.
- W3215682947 hasConcept C44280652 @default.
- W3215682947 hasConcept C47908070 @default.
- W3215682947 hasConcept C62520636 @default.
- W3215682947 hasConcept C81363708 @default.
- W3215682947 hasConcept C87976508 @default.
- W3215682947 hasConcept C89600930 @default.
- W3215682947 hasConceptScore W3215682947C108583219 @default.
- W3215682947 hasConceptScore W3215682947C121332964 @default.
- W3215682947 hasConceptScore W3215682947C153180895 @default.
- W3215682947 hasConceptScore W3215682947C154945302 @default.
- W3215682947 hasConceptScore W3215682947C159985019 @default.
- W3215682947 hasConceptScore W3215682947C160633673 @default.
- W3215682947 hasConceptScore W3215682947C18747287 @default.
- W3215682947 hasConceptScore W3215682947C191897082 @default.
- W3215682947 hasConceptScore W3215682947C192562407 @default.
- W3215682947 hasConceptScore W3215682947C2778117898 @default.
- W3215682947 hasConceptScore W3215682947C2779344738 @default.
- W3215682947 hasConceptScore W3215682947C27805521 @default.
- W3215682947 hasConceptScore W3215682947C37210646 @default.
- W3215682947 hasConceptScore W3215682947C41008148 @default.